Suppr超能文献

Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium.

作者信息

Kramer G F, Ames B N

机构信息

Department of Biochemistry, University of California, Berkeley 94720.

出版信息

Mutat Res. 1988 Sep;201(1):169-80. doi: 10.1016/0027-5107(88)90123-6.

Abstract

The mechanisms of selenite toxicity and mutagenicity in S. typhimurium have been characterized. In contrast to previous reports, selenite toxicity was shown not to involve nonspecific incorporation into protein via the sulfur metabolic pathways. Selenite toxicity was, however, shown to involve its ability to act as an oxidizing agent, primarily through reactions with sulfhydryls. Strains which lack glutathione (GSH) are more sensitive to killing by sulfhydryl reagents. The selenite sensitivity of such a mutant was a biphasic phenomenon. The mutant was much more sensitive than a strain which contained GSH at lower selenite concentrations whereas, at higher concentrations, the mutant was much more resistant to selenite. The mechanism of selenite toxicity at lower concentrations in this mutant thus appeared to involve damage to intracellular sulfhydryls. The sensitization to higher doses of selenite by GSH could be explained by the generation of toxic oxygen species. The in vitro reactions of selenite with both cysteine and GSH readily produced H2O2 and O2-. A S. typhimurium strain which overproduces superoxide dismutase (SOD) and catalase was more resistant to high concentrations of selenite, but not killing by the lower doses. Pretreatment of cells with a nonlethal dose of selenite induced the synthesis of proteins which protected the cells from killing by H2O2 or high doses of selenite. Selenite was also a mutagen in the tester strain TA104, in which a number of other oxidizing agents have also been found to be mutagens. These results were consistent with a model in which the reactions of selenite and intracellular thiols with concomitant production of active oxygen species are the primary causal agents of selenite mutagenicity and toxicity in S. typhimurium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验