Suppr超能文献

基于个体患者的脑卒中后功能恢复预测。

Patient-specific prediction of functional recovery after stroke.

机构信息

1 Division of Health and Social Care, King's College London, London, UK.

2 Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK.

出版信息

Int J Stroke. 2017 Jul;12(5):539-548. doi: 10.1177/1747493017706241. Epub 2017 Apr 25.

Abstract

Background and aims Clinical predictive models for stroke recovery could offer the opportunity of targeted early intervention and more specific information for patients and carers. In this study, we developed and validated a patient-specific prognostic model for monitoring recovery after stroke and assessed its clinical utility. Methods Four hundred and ninety-five patients from the population-based South London Stroke Register were included in a substudy between 2002 and 2004. Activities of daily living were assessed using Barthel Index) at one, two, three, four, six, eight, 12, 26, and 52 weeks after stroke. Penalized linear mixed models were developed to predict patients' functional recovery trajectories. An external validation cohort included 1049 newly registered stroke patients between 2005 and 2011. Prediction errors on discrimination and calibration were assessed. The potential clinical utility was evaluated using prognostic accuracy measurements and decision curve analysis. Results Predictive recovery curves showed good accuracy, with root mean squared deviation of 3 Barthel Index points and a R of 83% up to one year after stroke in the external cohort. The negative predictive values of the risk of poor recovery (Barthel Index <8) at three and 12 months were also excellent, 96% (95% CI [93.6-97.4]) and 93% [90.8-95.3], respectively, with a potential clinical utility measured by likelihood ratios (LR+:17 [10.8-26.8] at three months and LR+:11 [6.5-17.2] at 12 months). Decision curve analysis showed an increased clinical benefit, particularly at threshold probabilities of above 5% for predictive risk of poor outcomes. Conclusions A recovery curves tool seems to accurately predict progression of functional recovery in poststroke patients.

摘要

背景与目的

针对中风恢复的临床预测模型可为患者及其家属提供有针对性的早期干预和更具体的信息的机会。本研究旨在开发并验证一种用于监测中风后恢复的患者特异性预后模型,并评估其临床实用性。

方法

纳入了 2002 年至 2004 年间基于人群的南伦敦中风登记处(South London Stroke Register)的 495 名患者,进行了亚研究。使用 Barthel 指数评估日常生活活动能力,评估时间为中风后 1、2、3、4、6、8、12、26 和 52 周。采用惩罚线性混合模型预测患者的功能恢复轨迹。一个外部验证队列纳入了 2005 年至 2011 年间新登记的 1049 名中风患者。评估了区分和校准的预测误差。使用预后准确性测量和决策曲线分析评估潜在的临床实用性。

结果

预测恢复曲线具有较高的准确性,在外部队列中,中风后 1 年的均方根偏差为 3 个 Barthel 指数点,R2 为 83%。3 个月和 12 个月时不良恢复(Barthel 指数<8)风险的阴性预测值也非常高,分别为 96%(95%CI[93.6-97.4%])和 93%(90.8-95.3%),其潜在的临床实用性通过似然比(LR+:3 个月时为 17[10.8-26.8],12 个月时为 11[6.5-17.2])进行了测量。决策曲线分析表明,在预测不良结局的预测风险阈值概率高于 5%时,临床获益增加。

结论

恢复曲线工具似乎能够准确预测中风后患者功能恢复的进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验