Suppr超能文献

标准生物物理模型中尖锐峰值起始的基础。

The basis of sharp spike onset in standard biophysical models.

作者信息

Telenczuk Maria, Fontaine Bertrand, Brette Romain

机构信息

Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.

Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium.

出版信息

PLoS One. 2017 Apr 25;12(4):e0175362. doi: 10.1371/journal.pone.0175362. eCollection 2017.

Abstract

In most vertebrate neurons, spikes initiate in the axonal initial segment (AIS). When recorded in the soma, they have a surprisingly sharp onset, as if sodium (Na) channels opened abruptly. The main view stipulates that spikes initiate in a conventional manner at the distal end of the AIS, then progressively sharpen as they backpropagate to the soma. We examined the biophysical models used to substantiate this view, and we found that spikes do not initiate through a local axonal current loop that propagates along the axon, but through a global current loop encompassing the AIS and soma, which forms an electrical dipole. Therefore, the phenomenon is not adequately modeled as the backpropagation of an electrical wave along the axon, since the wavelength would be as large as the entire system. Instead, in these models, we found that spike initiation rather follows the critical resistive coupling model proposed recently, where the Na current entering the AIS is matched by the axial resistive current flowing to the soma. Besides demonstrating it by examining the balance of currents at spike initiation, we show that the observed increase in spike sharpness along the axon is artifactual and disappears when an appropriate measure of rapidness is used; instead, somatic onset rapidness can be predicted from spike shape at initiation site. Finally, we reproduce the phenomenon in a two-compartment model, showing that it does not rely on propagation. In these models, the sharp onset of somatic spikes is therefore not an artifact of observing spikes at the incorrect location, but rather the signature that spikes are initiated through a global soma-AIS current loop forming an electrical dipole.

摘要

在大多数脊椎动物神经元中,动作电位在轴突起始段(AIS)产生。当在胞体记录时,动作电位的起始惊人地尖锐,就好像钠(Na)通道突然打开一样。主流观点认为,动作电位在AIS远端以传统方式起始,然后在向胞体反向传播时逐渐变尖锐。我们研究了用于证实这一观点的生物物理模型,发现动作电位并非通过沿轴突传播的局部轴突电流环起始,而是通过一个包含AIS和胞体的全局电流环起始,该全局电流环形成一个电偶极。因此,这种现象不能充分地被模拟为电波沿轴突的反向传播,因为波长会与整个系统一样大。相反,在这些模型中,我们发现动作电位的起始更符合最近提出的临界电阻耦合模型,即进入AIS的Na电流与流向胞体的轴向电阻电流相匹配。除了通过检查动作电位起始时的电流平衡来证明这一点外,我们还表明,沿轴突观察到的动作电位尖锐度增加是人为造成的,当使用适当的快速性度量时这种增加就会消失;相反,胞体起始的快速性可以根据起始部位的动作电位形状来预测。最后,我们在双室模型中重现了这一现象,表明它不依赖于传播。因此,在这些模型中,胞体动作电位的尖锐起始不是在错误位置观察动作电位的人为现象,而是动作电位通过形成电偶极的全局胞体 - AIS电流环起始的标志。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ca0/5404793/71627f81963c/pone.0175362.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验