School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.
Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, United States.
ACS Appl Mater Interfaces. 2017 May 24;9(20):17435-17448. doi: 10.1021/acsami.7b03366. Epub 2017 May 15.
This work demonstrates a facile and versatile method for generating low scattering cross-linked quantum dot (QD)-polymer composite films and patterned highly emissive structures with ultrahigh QD loading, minimal phase separation, and tunable mechanical properties. Uniform QD-polymer films are fabricated using thiol-ene chemistry, in which cross-linked polymer networks are rapidly produced in ambient conditions via fast UV polymerization in bulk to suppress QD aggregation. UV-controlled thiol-ene chemistry limits phase separation through producing highly QD loaded cross-linked composites with loadings above majority of those reported in the literature (<1%) and approaching 30%. As the QD loading is increased, the thiol and ene conversion decreases, resulting in nanocomposites with widely variable and tailorable mechanical properties as a function of UV irradiation time with an elastic modulus decreasing to 1 GPa being characteristic of reinforced elastomeric materials, in contrast to usually observed stiff and brittle materials under these loading conditions. Furthermore, we demonstrate that the thiol-ene chemistry is compatible with soft-imprint lithography, making it possible to pattern highly loaded QD films while preserving the optical properties essential for high gain and low optical loss devices. The versatility of thiol-ene chemistry to produce high-dense QD-polymer films potentially makes it an important technique for polymer-based elastomeric optical metamaterials, where efficient light propagation is critical, like peculiar waveguides, sensors, and optical gain films.
这项工作展示了一种简便且通用的方法,用于生成低散射交联量子点 (QD)-聚合物复合膜,并形成具有超高 QD 负载、最小相分离和可调机械性能的高度发光结构。使用硫醇-烯化学制备均匀的 QD-聚合物膜,其中通过在环境条件下快速 UV 聚合在本体中快速产生交联聚合物网络,以抑制 QD 聚集。UV 控制的硫醇-烯化学通过生成具有高于文献中报道的大多数(<1%)和接近 30%的高 QD 负载交联复合材料来限制相分离。随着 QD 负载的增加,硫醇和烯的转化率降低,导致纳米复合材料具有广泛变化和可定制的机械性能,作为 UV 照射时间的函数,弹性模量降低到 1 GPa,这是增强弹性体材料的特征,与在这些负载条件下通常观察到的刚性和脆性材料形成对比。此外,我们证明了硫醇-烯化学与软压印光刻兼容,使得能够对高负载 QD 薄膜进行图案化,同时保留对于高增益和低光学损耗器件至关重要的光学性能。硫醇-烯化学生产高密度 QD-聚合物膜的多功能性可能使其成为聚合物基弹性体光学超材料的重要技术,在这些超材料中,高效光传播至关重要,例如特殊波导、传感器和光学增益薄膜。