文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Direct Optical Patterning of Quantum Dots: One Strategy, Different Chemical Processes.

作者信息

Antolini Francesco

机构信息

Fusion and Technologies for Nuclear Safety and Security Department, Physical Technology for Safety and Health Division, ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy.

出版信息

Nanomaterials (Basel). 2023 Jul 5;13(13):2008. doi: 10.3390/nano13132008.


DOI:10.3390/nano13132008
PMID:37446523
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10343473/
Abstract

Patterning, stability, and dispersion of the semiconductor quantum dots (scQDs) are three issues strictly interconnected for successful device manufacturing. Recently, several authors adopted direct optical patterning (DOP) as a step forward in photolithography to position the scQDs in a selected area. However, the chemistry behind the stability, dispersion, and patterning has to be carefully integrated to obtain a functional commercial device. This review describes different chemical strategies suitable to stabilize the scQDs both at a single level and as an ensemble. Special attention is paid to those strategies compatible with direct optical patterning (DOP). With the same purpose, the scQDs' dispersion in a matrix was described in terms of the scQD surface ligands' interactions with the matrix itself. The chemical processes behind the DOP are illustrated and discussed for five different approaches, all together considering stability, dispersion, and the patterning itself of the scQDs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/d32511cbb75b/nanomaterials-13-02008-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/1938eb40b072/nanomaterials-13-02008-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/35fca2c23674/nanomaterials-13-02008-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/068cda13aaad/nanomaterials-13-02008-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/76a504c80949/nanomaterials-13-02008-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/9e5cc2e0d8b8/nanomaterials-13-02008-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/53f39d842b01/nanomaterials-13-02008-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/3dddd9a07075/nanomaterials-13-02008-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/95579b787ea9/nanomaterials-13-02008-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/2efc090b5a27/nanomaterials-13-02008-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/967622250a7a/nanomaterials-13-02008-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/633d2822b8af/nanomaterials-13-02008-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/a83e620b0a48/nanomaterials-13-02008-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/ab68d686ada7/nanomaterials-13-02008-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/e1ba459265e4/nanomaterials-13-02008-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/2684e43b60fe/nanomaterials-13-02008-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/475a88ab020e/nanomaterials-13-02008-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/6858321192c1/nanomaterials-13-02008-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/f1a641c8e0ff/nanomaterials-13-02008-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/674dc49bba29/nanomaterials-13-02008-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/542c8dcdb515/nanomaterials-13-02008-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/efc3bec78fbd/nanomaterials-13-02008-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/173d6d2f1903/nanomaterials-13-02008-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/ba9bf161837a/nanomaterials-13-02008-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/e03b9032b4fe/nanomaterials-13-02008-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/d32511cbb75b/nanomaterials-13-02008-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/1938eb40b072/nanomaterials-13-02008-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/35fca2c23674/nanomaterials-13-02008-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/068cda13aaad/nanomaterials-13-02008-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/76a504c80949/nanomaterials-13-02008-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/9e5cc2e0d8b8/nanomaterials-13-02008-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/53f39d842b01/nanomaterials-13-02008-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/3dddd9a07075/nanomaterials-13-02008-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/95579b787ea9/nanomaterials-13-02008-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/2efc090b5a27/nanomaterials-13-02008-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/967622250a7a/nanomaterials-13-02008-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/633d2822b8af/nanomaterials-13-02008-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/a83e620b0a48/nanomaterials-13-02008-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/ab68d686ada7/nanomaterials-13-02008-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/e1ba459265e4/nanomaterials-13-02008-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/2684e43b60fe/nanomaterials-13-02008-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/475a88ab020e/nanomaterials-13-02008-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/6858321192c1/nanomaterials-13-02008-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/f1a641c8e0ff/nanomaterials-13-02008-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/674dc49bba29/nanomaterials-13-02008-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/542c8dcdb515/nanomaterials-13-02008-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/efc3bec78fbd/nanomaterials-13-02008-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/173d6d2f1903/nanomaterials-13-02008-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/ba9bf161837a/nanomaterials-13-02008-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/e03b9032b4fe/nanomaterials-13-02008-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1476/10343473/d32511cbb75b/nanomaterials-13-02008-g025.jpg

相似文献

[1]
Direct Optical Patterning of Quantum Dots: One Strategy, Different Chemical Processes.

Nanomaterials (Basel). 2023-7-5

[2]
Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration.

Nanotechnology. 2009-10-2

[3]
Role of re-growth interface preparation process for spectral line-width reduction of single InAs site-controlled quantum dots.

Nanotechnology. 2015-5-15

[4]
Quantum Dots Synthesis Through Direct Laser Patterning: A Review.

Front Chem. 2019-4-17

[5]
Acid-Base Reaction-Assisted Quantum Dot Patterning via Ligand Engineering and Photolithography.

ACS Appl Mater Interfaces. 2022-10-26

[6]
Direct Heat-Induced Patterning of Inorganic Nanomaterials.

J Am Chem Soc. 2022-6-15

[7]
Direct patterning of colloidal quantum dots with adaptable dual-ligand surface.

Nat Nanotechnol. 2022-9

[8]
Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment.

J Mater Chem B. 2020-12-21

[9]
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

Sensors (Basel). 2017-7-28

[10]
Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes.

Nat Commun. 2022-11-7

本文引用的文献

[1]
Quantum Dot Patterning and Encapsulation by Maskless Lithography for Display Technologies.

ACS Appl Mater Interfaces. 2023-2-9

[2]
2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration.

Chem Rev. 2023-4-12

[3]
Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning.

Nat Commun. 2023-1-4

[4]
Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes.

Nat Commun. 2022-11-7

[5]
The dynamic surface chemistry of colloidal metal chalcogenide quantum dots.

Nanoscale Adv. 2019-8-7

[6]
Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots.

Nanoscale Adv. 2021-1-20

[7]
Nondestructive Photopatterning of Heavy-Metal-Free Quantum Dots.

Adv Mater. 2022-10

[8]
Direct patterning of colloidal quantum dots with adaptable dual-ligand surface.

Nat Nanotechnol. 2022-9

[9]
Enhancing oxygen/moisture resistance of quantum dots by short-chain, densely cross-linked silica glass network.

Nanotechnology. 2022-8-30

[10]
Siloxane Hybrid Material-Encapsulated Highly Robust Flexible μLEDs for Biocompatible Lighting Applications.

ACS Appl Mater Interfaces. 2022-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索