Suppr超能文献

使用小波包变换进行表面粗糙度评估和纹理提取。

Using Wavelet Packet Transform for Surface Roughness Evaluation and Texture Extraction.

作者信息

Wang Xiao, Shi Tielin, Liao Guanglan, Zhang Yichun, Hong Yuan, Chen Kepeng

机构信息

State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430000, China.

出版信息

Sensors (Basel). 2017 Apr 23;17(4):933. doi: 10.3390/s17040933.

Abstract

Surface characterization plays a significant role in evaluating surface functional performance. In this paper, we introduce wavelet packet transform for surface roughness characterization and surface texture extraction. Surface topography is acquired by a confocal laser scanning microscope. Smooth border padding and de-noise process are implemented to generate a roughness surface precisely. By analyzing the high frequency components of a simulated profile, surface textures are separated by using wavelet packet transform, and the reconstructed roughness and waviness coincide well with the original ones. Wavelet packet transform is then used as a smooth filter for texture extraction. A roughness specimen and three real engineering surfaces are also analyzed in detail. Profile and areal roughness parameters are calculated to quantify the characterization results and compared with those measured by a profile meter. Most obtained roughness parameters agree well with the measurement results, and the largest deviation occurs in the skewness. The relations between the roughness parameters and noise are analyzed by simulation for explaining the relatively large deviations. The extracted textures reflect the surface structure and indicate the manufacturing conditions well, which is helpful for further feature recognition and matching. By using wavelet packet transform, engineering surfaces are comprehensively characterized including evaluating surface roughness and extracting surface texture.

摘要

表面表征在评估表面功能性能方面起着重要作用。本文介绍了用于表面粗糙度表征和表面纹理提取的小波包变换。表面形貌通过共聚焦激光扫描显微镜获取。实施平滑边界填充和去噪处理以精确生成粗糙度表面。通过分析模拟轮廓的高频分量,利用小波包变换分离表面纹理,重建的粗糙度和波纹度与原始值吻合良好。然后将小波包变换用作纹理提取的平滑滤波器。还详细分析了一个粗糙度试样和三个实际工程表面。计算轮廓和表面粗糙度参数以量化表征结果,并与轮廓仪测量的结果进行比较。大多数获得的粗糙度参数与测量结果吻合良好,最大偏差出现在偏度上。通过模拟分析粗糙度参数与噪声之间的关系以解释相对较大的偏差。提取的纹理反映了表面结构并很好地指示了制造条件,这有助于进一步的特征识别和匹配。通过使用小波包变换,对工程表面进行了全面表征,包括评估表面粗糙度和提取表面纹理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/5426929/5c80222ccca2/sensors-17-00933-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验