Suppr超能文献

分子动力学模拟表明,压缩和切变下的脱氧血红蛋白、氧合血红蛋白、碳氧血红蛋白和糖化血红蛋白表现出各向异性的力学行为。

Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior.

机构信息

a School of Chemical, Materials, and Biomedical Engineering , College of Engineering, University of Georgia , 597 D.W. Brooks Drive, Athens , GA 30602 , USA.

b School of Environmental, Civil, Agricultural and Mechanical Engineering , College of Engineering, University of Georgia , 712G Boyd Graduate Studies Research Center, Athens , GA 30602 , USA.

出版信息

J Biomol Struct Dyn. 2018 May;36(6):1417-1429. doi: 10.1080/07391102.2017.1323674. Epub 2017 May 22.

Abstract

We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.

摘要

我们开发了一种新的机械模型,用于确定四种不同血红蛋白结构的压缩和剪切机械性能。先前对血红蛋白结构的研究主要集中在整体力学性能上;然而,本研究使用定向分子动力学(SMD)模拟来研究作为红细胞主要成分的血红蛋白的力学性能,以获得在压缩和剪切加载条件下的各向异性力学性能。考虑了四种不同构型的血红蛋白分子:脱氧血红蛋白(deoxyHb)、氧合血红蛋白(HbO)、碳氧血红蛋白(HbCO)和糖化血红蛋白(HbA)。对血红蛋白变体进行 SMD 模拟以估计它们的单向刚度和剪切刚度。尽管血红蛋白因其球形形状和二级结构而在结构上被标记为球状蛋白,但我们的模拟结果显示在不同方向上(各向异性)的机械强度存在显著差异,并且在所研究的四种不同血红蛋白构型之间也存在强度变化。与脱氧血红蛋白、氧合血红蛋白和碳氧血红蛋白分子相比,糖化血红蛋白分子具有更高的整体压缩力学刚度和剪切刚度。模型的进一步结果表明,所研究的血红蛋白结构具有基于刚度的软外壳和硬核心。

相似文献

2
Determination of Human Hemoglobin Derivatives.
Hemoglobin. 2015;39(5):371-4. doi: 10.3109/03630269.2015.1062775. Epub 2015 Jul 21.
4
1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells.
Biophys J. 1995 Feb;68(2):681-93. doi: 10.1016/S0006-3495(95)80229-8.
5
The structure--function relationship of hemoglobin in solution at atomic resolution.
Chem Rev. 2004 Mar;104(3):1219-30. doi: 10.1021/cr940325w.
6
Diamagnetism of human apo-, oxy-, and (carbonmonoxy)hemoglobin.
Biochemistry. 1984 Feb 28;23(5):865-72. doi: 10.1021/bi00300a012.
8
Subpicosecond resonance Raman spectroscopy of carbonmonoxy- and oxyhemoglobin.
Biophys J. 1990 Oct;58(4):931-7. doi: 10.1016/S0006-3495(90)82437-1.
9
Human carboxyhemoglobin at 2.2 A resolution: structure and solvent comparisons of R-state, R2-state and T-state hemoglobins.
Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):355-66. doi: 10.1107/s0907444997012250.

引用本文的文献

1
Compressive Force Activation of the Neuronal Nitric Oxide Synthase Enzyme.
ACS Omega. 2025 Aug 22;10(35):39823-39832. doi: 10.1021/acsomega.5c03891. eCollection 2025 Sep 9.
2
Recent advances in computational modeling of fibrin clot formation: A review.
Comput Biol Chem. 2019 Dec;83:107148. doi: 10.1016/j.compbiolchem.2019.107148. Epub 2019 Nov 10.
4
Molecular insights into the irreversible mechanical behavior of sickle hemoglobin.
J Biomol Struct Dyn. 2019 Mar;37(5):1270-1281. doi: 10.1080/07391102.2018.1456362. Epub 2018 May 4.

本文引用的文献

2
Computational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions.
Biophys J. 2016 Apr 26;110(8):1869-1885. doi: 10.1016/j.bpj.2016.03.010.
3
Multiscale modeling and simulation of brain blood flow.
Phys Fluids (1994). 2016 Feb;28(2):021304. doi: 10.1063/1.4941315. Epub 2016 Feb 8.
4
Continuum modeling of deformation and aggregation of red blood cells.
J Biomech. 2016 Jul 26;49(11):2267-2279. doi: 10.1016/j.jbiomech.2015.11.027. Epub 2015 Nov 30.
5
Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow.
J R Soc Interface. 2015 Dec 6;12(113):20150949. doi: 10.1098/rsif.2015.0949.
6
Elastic behavior and platelet retraction in low- and high-density fibrin gels.
Biophys J. 2015 Jan 6;108(1):173-83. doi: 10.1016/j.bpj.2014.11.007.
7
Fibrinogen and red blood cells in venous thrombosis.
Thromb Res. 2014 May;133 Suppl 1(0 1):S38-40. doi: 10.1016/j.thromres.2014.03.017.
8
Abnormal blood clot formation induced by temperature responsive polymers by altered fibrin polymerization and platelet binding.
Biomaterials. 2014 Mar;35(8):2518-28. doi: 10.1016/j.biomaterials.2013.12.003. Epub 2013 Dec 31.
9
Interaction of red blood cells adjacent to and within a thrombus in experimental cerebral ischaemia.
Thromb Res. 2013;132(6):718-23. doi: 10.1016/j.thromres.2013.08.024. Epub 2013 Oct 25.
10
The hydraulic permeability of blood clots as a function of fibrin and platelet density.
Biophys J. 2013 Apr 16;104(8):1812-23. doi: 10.1016/j.bpj.2013.02.055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验