Suppr超能文献

端粒酶的蛋白质亚基在不同后生动物类群中呈现出动态进化和保守的模式。

The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa.

作者信息

Lai Alvina G, Pouchkina-Stantcheva Natalia, Di Donfrancesco Alessia, Kildisiute Gerda, Sahu Sounak, Aboobaker A Aziz

机构信息

Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.

出版信息

BMC Evol Biol. 2017 Apr 26;17(1):107. doi: 10.1186/s12862-017-0949-4.

Abstract

BACKGROUND

Most animals employ telomerase, which consists of a catalytic subunit known as the telomerase reverse transcriptase (TERT) and an RNA template, to maintain telomere ends. Given the importance of TERT and telomere biology in core metazoan life history traits, like ageing and the control of somatic cell proliferation, we hypothesised that TERT would have patterns of sequence and regulatory evolution reflecting the diverse life histories across the Animal Kingdom.

RESULTS

We performed a complete investigation of the evolutionary history of TERT across animals. We show that although TERT is almost ubiquitous across Metazoa, it has undergone substantial sequence evolution within canonical motifs. Beyond the known canonical motifs, we also identify and compare regions that are highly variable between lineages, but show conservation within phyla. Recent data have highlighted the importance of alternative splice forms of TERT in non-canonical functions and although animals may share some conserved introns, we find that the selection of exons for alternative splicing appears to be highly variable, and regulation by alternative splicing appears to be a very dynamic feature of TERT evolution. We show that even within a closely related group of triclad flatworms, where alternative splicing of TERT was previously correlated with reproductive strategy, we observe highly diverse splicing patterns.

CONCLUSIONS

Our work establishes that the evolutionary history and structural evolution of TERT involves previously unappreciated levels of change and the emergence of lineage specific motifs. The sequence conservation we describe within phyla suggests that these new motifs likely serve essential biological functions of TERT, which along with changes in splicing, underpin diverse functions of TERT important for animal life histories.

摘要

背景

大多数动物利用端粒酶来维持染色体末端,端粒酶由一个称为端粒酶逆转录酶(TERT)的催化亚基和一个RNA模板组成。鉴于TERT和端粒生物学在核心后生动物生活史特征(如衰老和体细胞增殖控制)中的重要性,我们推测TERT会有反映动物界不同生活史的序列和调控进化模式。

结果

我们对动物界TERT的进化历史进行了全面研究。我们发现,尽管TERT在后生动物中几乎无处不在,但它在经典基序内经历了大量的序列进化。除了已知的经典基序,我们还识别并比较了不同谱系间高度可变但在门内保守的区域。最近的数据突出了TERT的可变剪接形式在非经典功能中的重要性,尽管动物可能共享一些保守内含子,但我们发现用于可变剪接的外显子选择似乎高度可变,并且可变剪接调控似乎是TERT进化的一个非常动态的特征。我们表明,即使在一组密切相关的三肠扁形虫中,此前TERT的可变剪接与生殖策略相关,我们也观察到了高度多样的剪接模式。

结论

我们的研究确定,TERT的进化历史和结构进化涉及此前未被认识到的变化程度以及谱系特异性基序的出现。我们在门内描述的序列保守性表明,这些新基序可能发挥TERT的重要生物学功能,这些功能连同剪接变化,支撑了TERT对动物生活史重要的多种功能。

相似文献

2
Structure-function relationships in telomerase genes.
Biol Cell. 2009 Jul;101(7):375-92, 1 p following 392. doi: 10.1042/BC20080205.
3
The structure and function of telomerase reverse transcriptase.
Annu Rev Biochem. 2006;75:493-517. doi: 10.1146/annurev.biochem.75.103004.142412.
4
The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance.
RNA Biol. 2016 Aug 2;13(8):707-19. doi: 10.1080/15476286.2015.1134413. Epub 2016 Jan 19.
5
P. berghei telomerase subunit TERT is essential for parasite survival.
PLoS One. 2014 Oct 2;9(9):e108930. doi: 10.1371/journal.pone.0108930. eCollection 2014.
6
Structure and function of echinoderm telomerase RNA.
RNA. 2016 Feb;22(2):204-15. doi: 10.1261/rna.053280.115. Epub 2015 Nov 23.
7
Canis familiaris telomerase reverse transcriptase undergoes alternative splicing.
Mamm Genome. 2008 Sep;19(9):647-53. doi: 10.1007/s00335-008-9144-7. Epub 2008 Oct 4.
8
RNA binding domain of telomerase reverse transcriptase.
Mol Cell Biol. 2001 Feb;21(4):990-1000. doi: 10.1128/MCB.21.4.990-1000.2001.
10
Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax.
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8479-84. doi: 10.1073/pnas.95.15.8479.

引用本文的文献

1
A degenerate telomerase RNA directs telomeric DNA synthesis in lepidopteran insects.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2424443122. doi: 10.1073/pnas.2424443122. Epub 2025 Feb 28.
3
Biogenesis of telomerase RNA from a protein-coding mRNA precursor.
Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2204636119. doi: 10.1073/pnas.2204636119. Epub 2022 Oct 5.
4
Cell Cycle, Telomeres, and Telomerase in spp.: What Do We Know So Far?
Cells. 2021 Nov 16;10(11):3195. doi: 10.3390/cells10113195.
5
The Evolution of the Hallmarks of Aging.
Front Genet. 2021 Aug 26;12:693071. doi: 10.3389/fgene.2021.693071. eCollection 2021.
6
Long-lived termite kings and queens activate telomerase in somatic organs.
Proc Biol Sci. 2021 Apr 28;288(1949):20210511. doi: 10.1098/rspb.2021.0511. Epub 2021 Apr 21.
7
A structurally conserved human and telomerase catalytic core.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31078-31087. doi: 10.1073/pnas.2011684117. Epub 2020 Nov 23.
8
Structure of telomerase protein Pof8 C-terminal domain is an xRRM conserved among LARP7 proteins.
RNA Biol. 2021 Aug;18(8):1181-1192. doi: 10.1080/15476286.2020.1836891. Epub 2020 Nov 1.
9
Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes.
Biomolecules. 2020 Oct 8;10(10):1425. doi: 10.3390/biom10101425.
10
Differential mechanisms of tolerance to extreme environmental conditions in tardigrades.
Sci Rep. 2019 Oct 17;9(1):14938. doi: 10.1038/s41598-019-51471-8.

本文引用的文献

3
The C-terminal extension of human telomerase reverse transcriptase is necessary for high affinity binding to telomeric DNA.
Biochimie. 2016 Sep-Oct;128-129:114-21. doi: 10.1016/j.biochi.2016.07.010. Epub 2016 Jul 22.
4
Telomere Length and the Cancer-Atherosclerosis Trade-Off.
PLoS Genet. 2016 Jul 7;12(7):e1006144. doi: 10.1371/journal.pgen.1006144. eCollection 2016 Jul.
5
The Ensembl gene annotation system.
Database (Oxford). 2016 Jun 23;2016. doi: 10.1093/database/baw093. Print 2016.
6
No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5053-8. doi: 10.1073/pnas.1600338113. Epub 2016 Mar 24.
7
WormBase 2016: expanding to enable helminth genomic research.
Nucleic Acids Res. 2016 Jan 4;44(D1):D774-80. doi: 10.1093/nar/gkv1217. Epub 2015 Nov 17.
8
PlanMine--a mineable resource of planarian biology and biodiversity.
Nucleic Acids Res. 2016 Jan 4;44(D1):D764-73. doi: 10.1093/nar/gkv1148. Epub 2015 Nov 17.
9
Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12462-7. doi: 10.1073/pnas.1516718112. Epub 2015 Sep 21.
10
The genome of Aiptasia, a sea anemone model for coral symbiosis.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11893-8. doi: 10.1073/pnas.1513318112. Epub 2015 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验