Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20, Uppsala, Sweden.
Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden.
ACS Appl Mater Interfaces. 2017 May 17;9(19):16148-16158. doi: 10.1021/acsami.7b01421. Epub 2017 May 2.
Borophene, single atomic-layer sheet of boron ( Science 2015 , 350 , 1513 ), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li(Na) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is LiBH, which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li. Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na, respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.
硼烯,即硼的单层原子薄片(Science 2015,350,1513),是新兴二维材料家族中的后起之秀。硼烯具有各向异性的金属特性,而其氢化产物硼烷则被报道为一种无带隙的狄拉克材料,与著名的石墨烯处于同一水平。有趣的是,硼烷的这种转变也使它变得稳定,因为硼烯是在超高真空条件下,在金属(Ag)衬底上合成的。基于第一性原理密度泛函理论计算,我们研究了硼烷作为潜在的锂离子/钠离子电池负极材料的可能性。我们得到了硼烷上 Li(Na)原子的结合能为-2.58(-1.08 eV)eV,Bader 电荷分析表明 Li(Na)原子处于 Li(Na)状态。此外,在与 Li/Na 结合时,硼烷表现出金属特性,这可以从电子能带结构中得到证明。我们发现,Li/Na 在硼烷表面的扩散途径具有各向异性,其中 x 方向是有利的,其势垒分别为 0.27 和 0.09 eV。在评估锂离子负极性能时,我们估计最大的 Li 含量为 LiBH,这将产生一种具有最大理论比容量为 504 mAh/g 且平均电压为 0.43 V 的材料,与 Li/Li 相比。同样,对于钠离子,最大理论容量和平均电压分别估计为 504 mAh/g 和 0.03 V 与 Na/Na 相比。这些发现明确表明,硼烷可以成为锂离子和钠离子负极材料图上的一个潜在补充,并可以与一些最近报道的二维材料(包括石墨烯)相媲美。