Suppr超能文献

碳化钒(VC)MXene作为锂离子和钠离子电池的高效负极材料

Vanadium Carbide (VC) MXene as an Efficient Anode for Li-Ion and Na-Ion Batteries.

作者信息

Peng Qiong, Rehman Javed, Eid Kamel, Alofi Ayman S, Laref Amel, Albaqami Munirah D, Alotabi Reham Ghazi, Shibl Mohamed F

机构信息

Institution of Condensed Physics & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.

Department of Physics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Baluchistan, Pakistan.

出版信息

Nanomaterials (Basel). 2022 Aug 17;12(16):2825. doi: 10.3390/nano12162825.

Abstract

Li-ion batteries (LIBs) and Na-ion batteries (SIBs) are deemed green and efficient electrochemical energy storage and generation devices; meanwhile, acquiring a competent anode remains a serious challenge. Herein, the density-functional theory (DFT) was employed to investigate the performance of VC MXene as an anode for LIBs and SIBs. The results predict the outstanding electrical conductivity when Li/Na is loaded on VC. Both LiVC and NaVC ( = 0.125, 0.5, 1, 1.5, and 2) showed expected low-average open-circuit voltages of 0.38 V and 0.14 V, respectively, along with a good Li/Na storage capacity of (223 mAhg) and a good cycling performance. Furthermore, there was a low diffusion barrier of 0.048 eV for LiVC and 0.023 eV for NaVC, implying the prompt intercalation/extraction of Li/Na. Based on the findings of the current study, VC-based materials may be utilized as an anode for Li/Na-ion batteries in future applications.

摘要

锂离子电池(LIBs)和钠离子电池(SIBs)被认为是绿色高效的电化学储能和发电装置;与此同时,获得一种性能良好的负极仍然是一个严峻的挑战。在此,采用密度泛函理论(DFT)来研究VC MXene作为LIBs和SIBs负极的性能。结果预测了Li/Na负载在VC上时具有出色的电导率。LiVC和NaVC( = 0.125、0.5、1、1.5和2)分别显示出预期的低平均开路电压,分别为0.38 V和0.14 V,同时具有良好的Li/Na存储容量(223 mAhg)和良好的循环性能。此外,LiVC的扩散势垒低至0.048 eV,NaVC的扩散势垒为0.023 eV,这意味着Li/Na能够迅速嵌入/脱出。基于当前研究的结果,基于VC的材料在未来应用中可作为Li/Na离子电池的负极。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba44/9416528/3717e4dd9b70/nanomaterials-12-02825-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验