Suppr超能文献

硅硼氮片层及其衍生物作为锂离子和一氧化碳气体分子吸附潜在吸附剂材料的建模

Modeling of Si-B-N Sheets and Derivatives as a Potential Sorbent Material for the Adsorption of Li Ion and CO Gas Molecule.

作者信息

Rajamani Akilan, Saravanan Vinnarasi, Vijayakumar Subramaniam, Shankar Ramasamy

机构信息

Department of Physics and Department of Medical Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.

出版信息

ACS Omega. 2019 Aug 14;4(9):13808-13823. doi: 10.1021/acsomega.9b01354. eCollection 2019 Aug 27.

Abstract

In the present exploration, a few Si-B-N derivatives are derived to adsorb Li ions and CO gas molecules for the potential application of metal-air batteries. The newly derived structure's bond lengths are as follows: Si=Si, 2.2 Å; Si-B, 1.9 Å; Si-N, 1.7 Å; and B-N, 1.4 Å, consistent with the experimental results of relevant structures. The stability of the newly derived structures is examined by the atom-centered density propagation study by varying the temperature from 270 to 400 K, and no structural variations are observed throughout the dynamics. Li adsorption on the SiB ring has the maximum binding energy of -3.9 eV, and the result is consistent with the previous results. The rings with the 2:1 silicon-boron ratio provide strong adsorption for Li atoms. The calculated maximum electromotive force of the newly derived sheets is 0.56 V with the maximum theoretical density of 783 Wh/kg. Similarly, the maximum adsorption of CO on the sheet is -0.106 eV, which is considerably higher than that on graphene and its derivatives. CO adsorption has been carried out in the presence of water molecules to investigate the change in CO adsorption with the moisture (water) content, and the results show no significant change in the adsorption of CO with moisture. However, water has a strong interaction with the maximum interaction energy of -0.72 eV. Further, to explore the potential ability of the sheets, each sheet's edges are examined as hydrogen storage expedient and the surface as an artificial photosynthesis platform. The SiB ring is more favorable for the adsorption of H atom with the chemisorption of -7.138 eV. Similarly, all of the major UV-absorption spectral peaks fall between 450 and 800 nm, which shows that the sheet can be used as an artificial photosynthesis platform.

摘要

在当前的探索中,合成了几种硅硼氮衍生物,用于吸附锂离子和一氧化碳气体分子,以应用于金属空气电池。新合成结构的键长如下:硅硅键(Si=Si)为2.2 Å;硅硼键(Si-B)为1.9 Å;硅氮键(Si-N)为1.7 Å;硼氮键(B-N)为1.4 Å,与相关结构的实验结果一致。通过以原子为中心的密度传播研究,在270至400 K的温度范围内考察新合成结构的稳定性,在整个动力学过程中未观察到结构变化。锂在硅硼环上的吸附具有-3.9 eV的最大结合能,该结果与先前的结果一致。硅硼比为2:1的环对锂原子具有较强的吸附作用。新合成薄片的计算最大电动势为0.56 V,最大理论密度为783 Wh/kg。同样,薄片上一氧化碳的最大吸附能为-0.106 eV,远高于石墨烯及其衍生物上的吸附能。在有水分子存在的情况下进行一氧化碳吸附,以研究一氧化碳吸附随水分含量的变化,结果表明一氧化碳的吸附量随水分含量无显著变化。然而,水具有很强的相互作用,最大相互作用能为-0.72 eV。此外,为了探索薄片的潜在能力,考察了每个薄片边缘作为储氢手段以及表面作为人工光合作用平台的情况。硅硼环对氢原子的吸附更有利,化学吸附能为-7.138 eV。同样,所有主要的紫外吸收光谱峰都落在450至800 nm之间,这表明该薄片可作为人工光合作用平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5616/6714534/b2cecabf95c9/ao9b01354_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验