Suppr超能文献

用于全固态可充电锂电池的溅射沉积在 NASICON 型电解质上的 LiCoO 薄膜的特性研究。

Characterization of Sputter-Deposited LiCoO Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery.

机构信息

Department of Materials Science and Engineering, Hanyang University , 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea.

High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology , 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 136-791, Korea.

出版信息

ACS Appl Mater Interfaces. 2017 May 17;9(19):16063-16070. doi: 10.1021/acsami.6b15305. Epub 2017 May 2.

Abstract

All-solid-state Li-rechargeable batteries using a 500 nm-thick LiCoO (LCO) film deposited on two NASICON-type solid electrolyte substrates, LICGC (OHARA Inc.) and LiAlTi(PO) (LATP), are constructed. The postdeposition annealing temperature prior to the cell assembly is critical to produce a stable sharp LCO/electrolyte interface and to develop a strong crystallographic texture in the LCO film, conducive to migration of Li ions. Although the cells deliver a limited discharge capacity, the cells cycled stably for 50 cycles. The analysis of the LCO/electrolyte interfaces after cycling demonstrates that the sharp interface, once formed by proper thermal annealing, will remain stable without any evidence for contamination and with minimal intermixing of the constituent elements during cycling. Hence, although ionic conductivity of the NASICON-type solid electrolyte is lower than that of the sulfide electrolytes, the NACSICON-type electrolytes will maintain a stable interface in contact with a LCO cathode, which should be beneficial to improving the capacity retention as well as the rate capability of the all-solid state cell.

摘要

采用在两种 NASICON 型固体电解质基底(LICGC(OHARA 公司)和 LiAlTi(PO)(LATP)上沉积的 500nm 厚 LiCoO(LCO)薄膜,构建了全固态可再充电 Li 电池。在组装电池之前,沉积后的退火温度对于产生稳定的尖锐 LCO/电解质界面和在 LCO 薄膜中发展强的结晶织构至关重要,这有利于 Li 离子的迁移。尽管电池的放电容量有限,但电池稳定地循环了 50 次。循环后的 LCO/电解质界面分析表明,一旦通过适当的热退火形成尖锐界面,在循环过程中没有污染的证据,且组成元素的混合程度最小,那么该界面将保持稳定。因此,尽管 NASICON 型固体电解质的离子电导率低于硫化物电解质,但 NASICON 型电解质将与 LCO 阴极保持稳定的界面,这应该有利于提高全固态电池的容量保持率和倍率性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验