Ping Weiwei, Wang Chengwei, Wang Ruiliu, Dong Qi, Lin Zhiwei, Brozena Alexandra H, Dai Jiaqi, Luo Jian, Hu Liangbing
Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
Department of NanoEngineering, Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
Sci Adv. 2020 Nov 18;6(47). doi: 10.1126/sciadv.abc8641. Print 2020 Nov.
Current ceramic solid-state electrolyte (SSE) films have low ionic conductivities (10 to 10 S/cm ), attributed to the amorphous structure or volatile Li loss. Herein, we report a solution-based printing process followed by rapid (3 s) high-temperature (1500°C) reactive sintering for the fabrication of high-performance ceramic SSE films. The SSEs exhibit a dense, uniform structure and a superior ionic conductivity of up to 1 mS/cm. Furthermore, the fabrication time from precursor to final product is typically ~5 min, 10 to 100 times faster than conventional SSE syntheses. This printing and rapid sintering process also allows the layer-by-layer fabrication of multilayer structures without cross-contamination. As a proof of concept, we demonstrate a printed solid-state battery with conformal interfaces and excellent cycling stability. Our technique can be readily extended to other thin-film SSEs, which open previously unexplores opportunities in developing safe, high-performance solid-state batteries and other thin-film devices.
目前的陶瓷固态电解质(SSE)薄膜具有较低的离子电导率(10至10 S/cm),这归因于非晶结构或锂的挥发损失。在此,我们报告了一种基于溶液的印刷工艺,随后进行快速(约3秒)高温(约1500°C)反应烧结,用于制备高性能陶瓷SSE薄膜。这些SSE呈现出致密、均匀的结构以及高达1 mS/cm的优异离子电导率。此外,从前体到最终产品的制备时间通常约为5分钟,比传统的SSE合成快10至100倍。这种印刷和快速烧结工艺还允许逐层制造多层结构而不会产生交叉污染。作为概念验证,我们展示了一种具有保形界面和出色循环稳定性的印刷固态电池。我们的技术可以很容易地扩展到其他薄膜SSE,这为开发安全、高性能固态电池和其他薄膜器件开辟了以前未探索的机会。