Suppr超能文献

谷物植酸酶及其在提高微量营养素生物利用率方面的重要性。

Cereal phytases and their importance in improvement of micronutrients bioavailability.

作者信息

Vashishth Amit, Ram Sewa, Beniwal Vikas

机构信息

Quality and Basic Sciences Laboratory, ICAR-IIWBR, Karnal, 132001, Haryana, India.

Department of Biotechnology, MMU, Mullana, Ambala, 133207, Haryana, India.

出版信息

3 Biotech. 2017 May;7(1):42. doi: 10.1007/s13205-017-0698-5. Epub 2017 Apr 25.

Abstract

Phytic acid is a main reservoir of phosphorous (P) in plants and contributes to about 80% of the total P in cereal seeds. However, it is well known to possess anti-nutritional behavior. Because it has strong affinity to chelate divalent ions e.g. calcium, magnesium, and especially with iron and zinc. Therefore, it is extremely poor as a dietary source of P. To enhance bio-availability of micronutrients, an enzyme namely phytase is known to hydrolyze phytic acid. Unfortunately, phytase is not produced in the stomach of monogastric animals and humans. Thus, the presence of phytic acid in cereal foods has become major concern about the deficiency of essential micronutrients in developing countries. To address this problem, various types of phytase have been isolated, purified and characterized from different varieties of cereal till date. Therefore, the present article discusses about catalytic properties, gene regulation of such cereal phytases and their importance in ensuring food safety.

摘要

植酸是植物中磷(P)的主要储存形式,约占谷类种子总磷含量的80%。然而,众所周知它具有抗营养特性。因为它对螯合二价离子(如钙、镁,尤其是铁和锌)具有很强的亲和力。因此,作为膳食磷源,它的质量非常差。为提高微量营养素的生物利用率,一种名为植酸酶的酶已知可水解植酸。不幸的是,单胃动物和人类的胃中不产生植酸酶。因此,谷类食品中植酸的存在已成为发展中国家必需微量营养素缺乏的主要担忧。为解决这个问题,迄今为止已从不同种类的谷物中分离、纯化并鉴定了各种类型的植酸酶。因此,本文讨论了此类谷物植酸酶的催化特性、基因调控及其在确保食品安全方面的重要性。

相似文献

1
Cereal phytases and their importance in improvement of micronutrients bioavailability.
3 Biotech. 2017 May;7(1):42. doi: 10.1007/s13205-017-0698-5. Epub 2017 Apr 25.
2
Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains.
J Food Sci Technol. 2015 Feb;52(2):676-84. doi: 10.1007/s13197-013-0978-y. Epub 2013 Apr 24.
3
Unraveling the potential of bacterial phytases for sustainable management of phosphorous.
Biotechnol Appl Biochem. 2023 Oct;70(5):1690-1706. doi: 10.1002/bab.2466. Epub 2023 Apr 18.
4
Estimation of Iron Availability in Modified Cereal β-Glucan Extracts by an Digestion Model.
Front Nutr. 2022 Jun 13;9:879280. doi: 10.3389/fnut.2022.879280. eCollection 2022.
5
Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.
Transgenic Res. 2017 Feb;26(1):109-122. doi: 10.1007/s11248-016-9983-z. Epub 2016 Sep 29.
6
Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
J Sci Food Agric. 2016 Aug;96(11):3755-61. doi: 10.1002/jsfa.7564. Epub 2016 Jan 12.
7
Alkaline phytase from lily pollen: Investigation of biochemical properties.
Arch Biochem Biophys. 2005 Aug 15;440(2):133-40. doi: 10.1016/j.abb.2005.05.029.
8
Complementary foods for infant feeding in developing countries: their nutrient adequacy and improvement.
Eur J Clin Nutr. 1998 Oct;52(10):764-70. doi: 10.1038/sj.ejcn.1600645.

引用本文的文献

1
Towards Improved Bioavailability of Cereal Inositol Phosphates, -Inositol and Phenolic Acids.
Molecules. 2025 Feb 1;30(3):652. doi: 10.3390/molecules30030652.
2
Effect of Germination on the Digestion of Legume Proteins.
Foods. 2024 Aug 23;13(17):2655. doi: 10.3390/foods13172655.
3
Bacterial Degradation of Antinutrients in Foods: The Genomic Insight.
Foods. 2024 Jul 29;13(15):2408. doi: 10.3390/foods13152408.
5
Dietary and Lifestyle Factors of Brain Iron Accumulation and Parkinson's Disease Risk.
medRxiv. 2024 Mar 15:2024.03.13.24304253. doi: 10.1101/2024.03.13.24304253.
6
Gene-nutrient interactions that impact magnesium homeostasis increase risk for neural tube defects in mice exposed to dolutegravir.
Front Cell Dev Biol. 2023 Jun 12;11:1175917. doi: 10.3389/fcell.2023.1175917. eCollection 2023.
7
Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future.
Front Plant Sci. 2023 Feb 15;13:1070398. doi: 10.3389/fpls.2022.1070398. eCollection 2022.
8
A Synergistic and Efficient Thrombolytic Nanoplatform: A Mechanical Method of Blasting Combined with Thrombolytic Drugs.
Int J Nanomedicine. 2022 Nov 9;17:5229-5246. doi: 10.2147/IJN.S382964. eCollection 2022.
10
Research status of phytase.
3 Biotech. 2021 Sep;11(9):415. doi: 10.1007/s13205-021-02964-9. Epub 2021 Aug 19.

本文引用的文献

1
Potential of phytase-mediated iron release from cereal-based foods: a quantitative view.
Nutrients. 2013 Aug 2;5(8):3074-98. doi: 10.3390/nu5083074.
2
Phytases: crystal structures, protein engineering and potential biotechnological applications.
J Appl Microbiol. 2012 Jan;112(1):1-14. doi: 10.1111/j.1365-2672.2011.05181.x. Epub 2011 Nov 25.
3
Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.
Plant Physiol. 2011 Jul;156(3):1087-100. doi: 10.1104/pp.110.164756. Epub 2011 Jan 10.
9
Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(5):789-98. doi: 10.1080/10934520600614397.
10
Interaction between protein, phytate, and microbial phytase. In vitro studies.
J Agric Food Chem. 2006 Mar 8;54(5):1753-8. doi: 10.1021/jf0518554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验