Suppr超能文献

多图谱方法与局部注册质量加权相结合,用于基于 MRI 的头颈部解剖电子密度测绘。

Multiatlas approach with local registration goodness weighting for MRI-based electron density mapping of head and neck anatomy.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

Med Phys. 2017 Jul;44(7):3706-3717. doi: 10.1002/mp.12303. Epub 2017 Jun 1.

Abstract

PURPOSE

The growing use of magnetic resonance imaging (MRI) as a substitute for computed tomography-based treatment planning requires the development of effective algorithms to generate electron density maps for treatment planning and patient setup verification. The purpose of this work was to develop a method to synthesize computerized tomography (CT) for MR-only radiotherapy of head and neck cancer patients.

METHODS

The algorithm is based on registration of multiple patient datasets containing both MRI and CT images (a "multiatlas" algorithm). Twelve matched pairs of good quality CT and MRI scans (those without apparent motion and blurring artifacts) were selected from a pool of head and neck cancer patients to form the atlas. All atlas MRI scans were preprocessed to reduce scanner- and patient-induced intensity inhomogeneities and to standardize their intensity histograms. Atlas CT and MRIs were coregistered using a novel bone-to-air replacement technique applied to the CT scans that improves the similarity between CTs and MRIs and facilitates the registration process. For each new patient, all atlas MRIs are deformed initially onto the new patients' MRI. We introduce a generalized registration error (GRE) metric that automatically measures the goodness of local registration between MRI pairs. The final synthetic CT value at each point is a nonlinear GRE-weighted average of the atlas CTs. For evaluation, the leave-one-out technique was used for synthetic CT generation and the mean absolute error (MAE) between the original and synthetic CT was computed over the entire CT image. The impact of our proposed CT-MR registration scheme on the accuracy of the final synthetic CT was also studied. The original treatment plans were also recomputed on the new synthetic CTs and dose-volume histogram metrics were compared. In addition, the two-dimensional (2D) gamma analysis at 1%/1 mm and 2%/2 mm dose difference/distance to agreement was also performed to study the dose distribution at the isocenter.

RESULTS

MAE error (± standard deviation) between the original and the synthetic CTs was 64 ± 10, 113 ± 12, and 130 ± 28 Hounsfield Unit (HU) for the entire image, air, and bone regions respectively. Our results showed that our proposed bone-suppression based CT-MR fusion and GRE-weighted strategy could lower the overall MAE error between the original and synthetic CTs by ~69% and ~34% respectively. Dose recalculation comparison showed highly consistent results between plans based on the synthetic vs. the original CTs. The 2D gamma analysis revealed the pass rate of 95.44 ± 2.5 and 99.36 ± 0.71 for 1%/1 mm and 2%/2 mm criteria respectively. Due to local registration weighting, the method is robust with respect to MRI imaging artifacts.

CONCLUSION

We developed a novel image analysis technique to synthesize CT for head and neck anatomy. Novel methods were introduced to accurately register atlas CTs and MRIs as well as to weight the final electron density maps using local registration goodness estimates. The resulting accuracy is clinically acceptable, at least for these atlas patients.

摘要

目的

磁共振成像(MRI)作为基于计算机断层扫描(CT)的治疗计划替代手段的应用日益广泛,这就需要开发有效的算法来为治疗计划和患者摆位验证生成电子密度图。本研究旨在开发一种用于头颈部癌症患者仅接受 MRI 放疗的 CT 合成方法。

方法

该算法基于包含 MRI 和 CT 图像的多个患者数据集的配准(“多图谱”算法)。从一组头颈部癌症患者中选择 12 对质量良好的 CT 和 MRI 扫描(那些没有明显运动和模糊伪影的扫描)来形成图谱。所有图谱 MRI 扫描均经过预处理,以减少扫描器和患者引起的强度不均匀性,并使强度直方图标准化。使用一种新的骨-空气替代技术对 CT 图谱进行配准,该技术提高了 CT 和 MRI 之间的相似性,并有助于配准过程。对于每个新患者,所有图谱 MRI 首先初始变形到新患者的 MRI 上。我们引入了一种广义配准误差(GRE)度量标准,该标准可自动测量 MRI 对之间局部配准的好坏。每个点的最终合成 CT 值是图谱 CT 的非线性 GRE 加权平均值。为了评估,采用了留一法进行合成 CT 生成,计算了整个 CT 图像中原 CT 和合成 CT 之间的平均绝对误差(MAE)。还研究了我们提出的 CT-MR 配准方案对最终合成 CT 准确性的影响。新的合成 CT 上也重新计算了原始治疗计划,并比较了剂量-体积直方图指标。此外,还进行了二维(2D)伽马分析,以 1%/1mm 和 2%/2mm 的剂量差异/一致性距离,研究等中心处的剂量分布。

结果

原始和合成 CT 之间的 MAE 误差(±标准差)分别为整个图像、空气和骨区域的 64±10、113±12 和 130±28 亨氏单位(HU)。我们的结果表明,我们提出的基于骨抑制的 CT-MR 融合和 GRE 加权策略可以将原始和合成 CT 之间的整体 MAE 误差分别降低约 69%和 34%。剂量重新计算比较表明,基于合成 CT 和原始 CT 的计划结果高度一致。2D 伽马分析显示,1%/1mm 和 2%/2mm 标准的通过率分别为 95.44±2.5%和 99.36±0.71%。由于局部配准加权,该方法对 MRI 成像伪影具有鲁棒性。

结论

我们开发了一种新的图像分析技术,用于合成头颈部解剖的 CT。引入了新方法来准确配准图谱 CT 和 MRI,并使用局部配准良好度估计来加权最终的电子密度图。所得精度在临床上是可以接受的,至少对于这些图谱患者是如此。

相似文献

2
Dosimetric evaluation of an atlas-based synthetic CT generation approach for MR-only radiotherapy of pelvis anatomy.
J Appl Clin Med Phys. 2019 Jan;20(1):101-109. doi: 10.1002/acm2.12501. Epub 2018 Nov 26.
3
Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning.
Phys Med Biol. 2016 Sep 7;61(17):6531-52. doi: 10.1088/0031-9155/61/17/6531. Epub 2016 Aug 15.
5
An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy.
Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):e5-11. doi: 10.1016/j.ijrobp.2011.11.056. Epub 2012 Feb 11.
6
MRI-based treatment planning with pseudo CT generated through atlas registration.
Med Phys. 2014 May;41(5):051711. doi: 10.1118/1.4873315.
10
A Technique to Rapidly Generate Synthetic Computed Tomography for Magnetic Resonance Imaging-Guided Online Adaptive Replanning: An Exploratory Study.
Int J Radiat Oncol Biol Phys. 2019 Apr 1;103(5):1261-1270. doi: 10.1016/j.ijrobp.2018.12.008. Epub 2018 Dec 11.

引用本文的文献

1
Adaptive Radiation Therapy for Head and Neck Cancer.
ArXiv. 2025 Aug 1:arXiv:2508.00651v1.
2
Head and neck cancer patient positioning using synthetic CT data in MRI-only radiation therapy.
J Appl Clin Med Phys. 2022 Apr;23(4):e13525. doi: 10.1002/acm2.13525. Epub 2022 Jan 19.
6
Dosimetric evaluation of synthetic CT generated with GANs for MRI-only proton therapy treatment planning of brain tumors.
J Appl Clin Med Phys. 2020 May;21(5):76-86. doi: 10.1002/acm2.12856. Epub 2020 Mar 26.
8
Patch-based generative adversarial neural network models for head and neck MR-only planning.
Med Phys. 2020 Feb;47(2):626-642. doi: 10.1002/mp.13927. Epub 2019 Dec 25.
9
Dynamic multiatlas selection-based consensus segmentation of head and neck structures from CT images.
Med Phys. 2019 Dec;46(12):5612-5622. doi: 10.1002/mp.13854. Epub 2019 Oct 31.

本文引用的文献

2
Magnetic Resonance-Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region.
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):497-506. doi: 10.1016/j.ijrobp.2015.07.001. Epub 2015 Jul 9.
5
Generating patient specific pseudo-CT of the head from MR using atlas-based regression.
Phys Med Biol. 2015 Jan 21;60(2):825-39. doi: 10.1088/0031-9155/60/2/825. Epub 2015 Jan 7.
6
A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times.
Phys Med Biol. 2014 Dec 7;59(23):7501-19. doi: 10.1088/0031-9155/59/23/7501. Epub 2014 Nov 13.
7
A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning.
Phys Med Biol. 2014 Nov 7;59(21):6595-606. doi: 10.1088/0031-9155/59/21/6595. Epub 2014 Oct 16.
8
Estimation of geometrically undistorted B(0) inhomogeneity maps.
Phys Med Biol. 2014 Sep 7;59(17):4945-59. doi: 10.1088/0031-9155/59/17/4945. Epub 2014 Aug 11.
9
Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies.
IEEE Trans Med Imaging. 2014 Dec;33(12):2332-41. doi: 10.1109/TMI.2014.2340135. Epub 2014 Jul 17.
10
MRI-based treatment planning with pseudo CT generated through atlas registration.
Med Phys. 2014 May;41(5):051711. doi: 10.1118/1.4873315.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验