Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
Med Phys. 2019 Dec;46(12):5612-5622. doi: 10.1002/mp.13854. Epub 2019 Oct 31.
Manual delineation of head and neck (H&N) organ-at-risk (OAR) structures for radiation therapy planning is time consuming and highly variable. Therefore, we developed a dynamic multiatlas selection-based approach for fast and reproducible segmentation.
Our approach dynamically selects and weights the appropriate number of atlases for weighted label fusion and generates segmentations and consensus maps indicating voxel-wise agreement between different atlases. Atlases were selected for a target as those exceeding an alignment weight called dynamic atlas attention index. Alignment weights were computed at the image level and called global weighted voting (GWV) or at the structure level and called structure weighted voting (SWV) by using a normalized metric computed as the sum of squared distances of computed tomography (CT)-radiodensity and modality-independent neighborhood descriptors (extracting edge information). Performance comparisons were performed using 77 H&N CT images from an internal Memorial Sloan-Kettering Cancer Center dataset (N = 45) and an external dataset (N = 32) using Dice similarity coefficient (DSC), Hausdorff distance (HD), 95th percentile of HD, median of maximum surface distance, and volume ratio error against expert delineation. Pairwise DSC accuracy comparisons of proposed (GWV, SWV) vs single best atlas (BA) or majority voting (MV) methods were performed using Wilcoxon rank-sum tests.
Both SWV and GWV methods produced significantly better segmentation accuracy than BA (P < 0.001) and MV (P < 0.001) for all OARs within both datasets. SWV generated the most accurate segmentations with DSC of: 0.88 for oral cavity, 0.85 for mandible, 0.84 for cord, 0.76 for brainstem and parotids, 0.71 for larynx, and 0.60 for submandibular glands. SWV's accuracy exceeded GWV's for submandibular glands (DSC = 0.60 vs 0.52, P = 0.019).
The contributed SWV and GWV methods generated more accurate automated segmentations than the other two multiatlas-based segmentation techniques. The consensus maps could be combined with segmentations to visualize voxel-wise consensus between atlases within OARs during manual review.
对头颈部(H&N)危及器官(OAR)结构进行放射治疗计划的手动勾画既费时又高度可变。因此,我们开发了一种基于动态多图谱选择的快速且可重复的分割方法。
我们的方法动态选择和加权适当数量的图谱,以进行加权标签融合,并生成分割和共识图,指示不同图谱之间的体素级别的一致性。对于目标,选择超过称为动态图谱注意力指数的对齐权重的图谱。对齐权重是在图像级别(称为全局加权投票(GWV))或在结构级别(称为结构加权投票(SWV))计算的,使用作为计算断层摄影术(CT)-放射密度和模态无关邻域描述符(提取边缘信息)的平方距离之和的归一化度量来计算。使用来自内部 Memorial Sloan-Kettering Cancer Center 数据集(N=45)和外部数据集(N=32)的 77 个 H&N CT 图像,使用 Dice 相似系数(DSC),Hausdorff 距离(HD),HD 的第 95 百分位数,最大表面距离的中位数以及体积比误差来进行性能比较,与专家勾画进行比较。使用 Wilcoxon 秩和检验对所提出的(GWV,SWV)与单个最佳图谱(BA)或多数投票(MV)方法的成对 DSC 准确性进行比较。
SWV 和 GWV 方法在两个数据集的所有 OAR 中均产生了明显优于 BA(P<0.001)和 MV(P<0.001)的分割准确性。SWV 生成的最准确分割的 DSC 为:口腔为 0.88,下颌骨为 0.85,声带为 0.84,脑干和腮腺为 0.76,喉为 0.71,颌下腺为 0.60。SWV 的准确性优于颌下腺的 GWV(DSC=0.60 对 0.52,P=0.019)。
所提出的 SWV 和 GWV 方法生成的自动分割比其他两种基于多图谱的分割技术更准确。共识图可与分割图结合使用,以便在手动检查期间可视化 OAR 内图谱之间的体素级一致性。