Center for Polymers and Organic Solids, Department of Materials, Chemical Engineering, and Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
Angew Chem Int Ed Engl. 2017 Jun 1;56(23):6519-6522. doi: 10.1002/anie.201701964. Epub 2017 Apr 26.
We probe anaerobic respiration of bacteria in the presence of conjugated polyelectrolytes (CPEs). Three different CPEs were used to probe how structural variations impact biocurrent generation from Shewanella oneidensis MR-1. For the self-doped anionic CPE only, absorption spectroscopy shows that the addition of S. oneidensis MR-1 leads to the disappearance of the polaron (radical cation) band at >900 nm and an increase in the band at 735 nm due to the neutral species, consistent with electron transfer from microbe to polymer. Microbial three-electrode electrochemical cells (M3Cs) show an increase in the current generated by S. oneidensis MR-1 with addition of the self-doped CPE relative to other CPEs and controls. These experiments combined with in situ cyclic voltammetry suggest that the doped CPE facilitates electron transport to electrodes and reveal structure-function relationships relevant to developing materials for biotic/abiotic interfaces.
我们研究了在共轭聚合物电解质(CPE)存在下细菌的无氧呼吸。使用了三种不同的 CPE 来研究结构变化如何影响希瓦氏菌(Shewanella oneidensis MR-1)产生生物电流。对于自掺杂的阴离子 CPE,吸收光谱表明,添加希瓦氏菌(Shewanella oneidensis MR-1)会导致>900nm 处的极化子(自由基阳离子)带消失,并由于中性物种而在 735nm 处出现增加,这与从微生物到聚合物的电子转移一致。微生物三电极电化学池(M3Cs)显示,与其他 CPE 和对照物相比,添加自掺杂 CPE 会增加希瓦氏菌(Shewanella oneidensis MR-1)产生的电流。这些实验结合原位循环伏安法表明,掺杂的 CPE 有利于电子向电极的传输,并揭示了与开发用于生物/非生物界面的材料相关的结构-功能关系。