Suppr超能文献

利用遗传模块对大肠杆菌内的氧化还原反应进行电子控制。

Electronic control of redox reactions inside Escherichia coli using a genetic module.

机构信息

The Molecular Foundry, Biological Nanostructures Facility, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

Department of BioSciences, Rice University, Houston, Texas, United States of America.

出版信息

PLoS One. 2021 Nov 18;16(11):e0258380. doi: 10.1371/journal.pone.0258380. eCollection 2021.

Abstract

Microorganisms regulate the redox state of different biomolecules to precisely control biological processes. These processes can be modulated by electrochemically coupling intracellular biomolecules to an external electrode, but current approaches afford only limited control and specificity. Here we describe specific electrochemical control of the reduction of intracellular biomolecules in Escherichia coli through introduction of a heterologous electron transfer pathway. E. coli expressing cymAmtrCAB from Shewanella oneidensis MR-1 consumed electrons directly from a cathode when fumarate or nitrate, both intracellular electron acceptors, were present. The fumarate-triggered current consumption occurred only when fumarate reductase was present, indicating all the electrons passed through this enzyme. Moreover, CymAMtrCAB-expressing E. coli used current to stoichiometrically reduce nitrate. Thus, our work introduces a modular genetic tool to reduce a specific intracellular redox molecule with an electrode, opening the possibility of electronically controlling biological processes such as biosynthesis and growth in any microorganism.

摘要

微生物调节不同生物分子的氧化还原状态,以精确控制生物过程。这些过程可以通过将细胞内生物分子电化学偶联到外部电极来调节,但目前的方法仅提供有限的控制和特异性。在这里,我们描述了通过引入异源电子转移途径,对大肠杆菌中细胞内生物分子的还原进行特异性电化学控制。当富马酸盐或硝酸盐(都是细胞内电子受体)存在时,表达来自希瓦氏菌属的 cymAmtrCAB 的大肠杆菌从阴极直接消耗电子。只有当存在延胡索酸还原酶时,富马酸盐触发的电流消耗才会发生,这表明所有电子都通过该酶传递。此外,表达 CymAMtrCAB 的大肠杆菌利用电流将硝酸盐化学计量还原。因此,我们的工作引入了一种模块化的遗传工具,可使用电极还原特定的细胞内氧化还原分子,为电子控制任何微生物中的生物合成和生长等生物过程开辟了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6724/8601525/471163ede339/pone.0258380.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验