Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore.
Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore.
Adv Sci (Weinh). 2024 Nov;11(42):e2405242. doi: 10.1002/advs.202405242. Epub 2024 Sep 11.
gLiving materials can achieve unprecedented function by combining synthetic materials with the wide range of cellular functions. Of interest are situations where the critical properties of individual abiotic and biotic elements improve via their combination. For example, integrating electroactive bacteria into conjugated polyelectrolyte (CPE) hydrogels increases biocurrent production. One observes more efficient electrical charge transport within the CPE matrix in the presence of Shewanella oneidensis MR-1 and more current per cell is extracted, compared to traditional biofilms. Here, the origin of these synergistic effects are examined. Transcriptomics reveals that genes in S. oneidensis MR-1 related to bacteriophages and energy metabolism are upregulated in the composite material. Fluorescent staining and rheological measurements before and after enzymatic treatment identified the importance of extracellular biomaterials in increasing matrix cohesion. The synergy between CPE and S. oneidensis MR-1 thus arises from initially unanticipated changes in matrix composition and bacteria adaption within the synthetic environment.
gLiving 材料可以通过将合成材料与广泛的细胞功能相结合,从而实现前所未有的功能。有趣的是,通过组合,个别非生物和生物元素的关键特性会得到改善。例如,将电活性细菌整合到共轭聚电解质 (CPE) 水凝胶中会增加生物电流的产生。与传统生物膜相比,在 Shewanella oneidensis MR-1 的存在下,CPE 基质内的电荷传输效率更高,并且每个细胞提取的电流更多。在这里,研究了这些协同效应的起源。转录组学表明,复合材料中与噬菌体和能量代谢相关的 S. oneidensis MR-1 基因上调。酶处理前后的荧光染色和流变测量确定了细胞外生物材料在增加基质内聚性方面的重要性。因此,CPE 和 S. oneidensis MR-1 之间的协同作用源于最初未预料到的基质组成变化和细菌在合成环境中的适应性。