Suppr超能文献

NMRbox:生物分子核磁共振计算资源

NMRbox: A Resource for Biomolecular NMR Computation.

作者信息

Maciejewski Mark W, Schuyler Adam D, Gryk Michael R, Moraru Ion I, Romero Pedro R, Ulrich Eldon L, Eghbalnia Hamid R, Livny Miron, Delaglio Frank, Hoch Jeffrey C

机构信息

Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut.

Department of Cell Biology, UConn Health, Farmington, Connecticut.

出版信息

Biophys J. 2017 Apr 25;112(8):1529-1534. doi: 10.1016/j.bpj.2017.03.011.

Abstract

Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users.

摘要

计算技术的进步推动了核磁共振(NMR)在生物分子应用方面的诸多最新进展。由于NMR应用的广泛多样性,用于处理和分析NMR数据的软件包数量众多且种类繁杂,各个实验室依赖着数十个甚至数百个软件包。发现、获取、安装和维护所有这些软件包是一项繁重的任务。由于大多数软件包源自学术实验室,当开发者毕业、资金停止或研究人员转向其他项目时,软件的持续性就会受到影响。为了简化生物分子NMR软件的获取和使用,促进软件的持续性,并提高计算工作流程的可重复性,我们开发了NMRbox,这是一个用于NMR软件和计算的共享资源。NMRbox采用虚拟化技术提供一个预先配置了数百个软件包的综合软件环境,可作为可下载的虚拟机或由专用计算云支持的平台即服务提供。正在进行的开发包括一个元数据收集器,用于规范、注释和保存工作流程,促进并加强向生物磁体库(BioMagResBank)的数据存档,以及用于贝叶斯推理的工具,以增强计算分析的稳健性和可扩展性。除了便于使用和保存丰富且动态更新的生物分子NMR软件环境外,NMRbox还促进了一类新型元软件包的开发和部署。NMRbox对非营利用户免费提供。

相似文献

1
NMRbox: A Resource for Biomolecular NMR Computation.
Biophys J. 2017 Apr 25;112(8):1529-1534. doi: 10.1016/j.bpj.2017.03.011.
2
Merging NMR Data and Computation Facilitates Data-Centered Research.
Front Mol Biosci. 2022 Jan 17;8:817175. doi: 10.3389/fmolb.2021.817175. eCollection 2021.
3
BioMagResBank (BMRB) as a Resource for Structural Biology.
Methods Mol Biol. 2020;2112:187-218. doi: 10.1007/978-1-0716-0270-6_14.
4
CONNJUR Workflow Builder: a software integration environment for spectral reconstruction.
J Biomol NMR. 2015 Jul;62(3):313-26. doi: 10.1007/s10858-015-9946-3. Epub 2015 Jun 12.
5
Cloud Computing with iPlant Atmosphere.
Curr Protoc Bioinformatics. 2013 Oct 15;43:9.15.1-9.15.20. doi: 10.1002/0471250953.bi0915s43.
6
PINE-SPARKY.2 for automated NMR-based protein structure research.
Bioinformatics. 2018 May 1;34(9):1586-1588. doi: 10.1093/bioinformatics/btx785.
7
Integrative NMR for biomolecular research.
J Biomol NMR. 2016 Apr;64(4):307-32. doi: 10.1007/s10858-016-0029-x. Epub 2016 Mar 29.
8
CHESPA/CHESCA-SPARKY: automated NMR data analysis plugins for SPARKY to map protein allostery.
Bioinformatics. 2021 May 23;37(8):1176-1177. doi: 10.1093/bioinformatics/btaa781.
9
Updates in metabolomics tools and resources: 2014-2015.
Electrophoresis. 2016 Jan;37(1):86-110. doi: 10.1002/elps.201500417. Epub 2015 Nov 17.
10
CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMR-protein spectral assignment.
J Biomol NMR. 2015 Oct;63(2):141-50. doi: 10.1007/s10858-015-9964-1. Epub 2015 Aug 8.

引用本文的文献

2
CCDC32 collaborates with the membrane to assemble the AP-2 clathrin adaptor complex.
bioRxiv. 2025 Aug 5:2025.08.05.668722. doi: 10.1101/2025.08.05.668722.
3
Structures of dynamic interactors at native proteasomes by PhIX-MS and cryoelectron microscopy.
bioRxiv. 2025 Aug 2:2025.07.31.667872. doi: 10.1101/2025.07.31.667872.
4
Protocol for deriving distance restraints from AlphaFold for use in solution NMR structure determination.
STAR Protoc. 2025 Jul 28;6(3):103988. doi: 10.1016/j.xpro.2025.103988.
5
The structure, folding kinetics, and dynamics of long poly(UG) RNA.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf685.
6
Protocol for production and characterization of SARS-CoV-2 PL in Escherichia coli.
STAR Protoc. 2025 Jul 18;6(3):103952. doi: 10.1016/j.xpro.2025.103952.
7
Saccharomyces cerevisiae Xrs2 Binds DNA Through Its FHA Domain.
J Mol Biol. 2025 Jul 16:169348. doi: 10.1016/j.jmb.2025.169348.
8
Evaluating metrics of spectral quality in nonuniform sampling.
J Magn Reson Open. 2025 Jun;23. doi: 10.1016/j.jmro.2025.100187. Epub 2025 Jan 27.
9
Ion channel structure and function of the MERS coronavirus E protein.
Sci Adv. 2025 Jul 11;11(28):eadx1788. doi: 10.1126/sciadv.adx1788. Epub 2025 Jul 9.
10
Structural Insights into the GABARAP-ATG3 Backside Interaction and Apo ATG3 Conformation.
Biochemistry. 2025 Aug 5;64(15):3178-3189. doi: 10.1021/acs.biochem.4c00485. Epub 2025 Jul 8.

本文引用的文献

1
Enhancing reproducibility for computational methods.
Science. 2016 Dec 9;354(6317):1240-1241. doi: 10.1126/science.aah6168.
2
CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis.
J Biomol NMR. 2016 Oct;66(2):111-124. doi: 10.1007/s10858-016-0060-y. Epub 2016 Sep 23.
3
Integrative NMR for biomolecular research.
J Biomol NMR. 2016 Apr;64(4):307-32. doi: 10.1007/s10858-016-0029-x. Epub 2016 Mar 29.
4
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.
Structure. 2015 Oct 6;23(10):1958-1966. doi: 10.1016/j.str.2015.07.019. Epub 2015 Sep 10.
5
CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMR-protein spectral assignment.
J Biomol NMR. 2015 Oct;63(2):141-50. doi: 10.1007/s10858-015-9964-1. Epub 2015 Aug 8.
6
CONNJUR Workflow Builder: a software integration environment for spectral reconstruction.
J Biomol NMR. 2015 Jul;62(3):313-26. doi: 10.1007/s10858-015-9946-3. Epub 2015 Jun 12.
7
Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.
J Biomol NMR. 2015 Aug;62(4):497-502. doi: 10.1007/s10858-015-9942-7. Epub 2015 May 17.
8
NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy.
Bioinformatics. 2015 Apr 15;31(8):1325-7. doi: 10.1093/bioinformatics/btu830. Epub 2014 Dec 12.
9
Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.
Prog Nucl Magn Reson Spectrosc. 2014 Nov;83:21-41. doi: 10.1016/j.pnmrs.2014.09.002. Epub 2014 Oct 13.
10
Protein structure modeling with MODELLER.
Methods Mol Biol. 2014;1137:1-15. doi: 10.1007/978-1-4939-0366-5_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验