Sloan Dillon E, Matthews Ariel, Yanagisawa Haruaki, Tedamrongwanish Tanita, Cannon Kevin, Simmons Jake, Chappell Garrett, Nicely Nathan I, Berlow Rebecca, Kikkawa Masahide, Baker Richard W
Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27599, USA.
Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
bioRxiv. 2025 Aug 5:2025.08.05.668722. doi: 10.1101/2025.08.05.668722.
Cells have evolved a variety of assembly chaperones to aid in the difficult process of forming macromolecular complexes in a crowded cytoplasm. Assembly of adaptor protein complex 2 (AP-2), the primary cargo adaptor in clathrin-mediated endocytosis, is regulated by the chaperones AAGAB and CCDC32, whose deletion causes loss of all AP-2 subunits . AAGAB and CCDC32 are thought to act sequentially to assemble the AP-2 tetramer from its constituent heterodimers. However, the molecular requirements and structural consequences of CCDC32 interaction with AP-2 are not yet understood. Here, using reconstitution and integrative structural analysis, we describe the molecular mechanism of CCDC32-mediated AP-2 assembly. First, CCDC32 interacts with the appendage domain of the AP-2 α subunit, using the same binding site as canonical endocytic regulators in addition to a novel, yet highly conserved pocket on α. CCDC32 contains cargo sorting motifs normally found in trans-membrane cargo and binds to AP-2 heterodimers using canonical cargo-binding sites. Additionally, two amphipathic helices in CCDC32 bind to the α/σ2 heterodimer. Surprisingly, in solution, we find that CCDC32 prevents complex assembly and actively disassembles AP-2 tetramers. Inhibition requires the amphipathic helices of CCDC32, which also mediate binding to PIP2-containing membranes. The presence of PIP2-containing membrane stabilizes the final stages of assembly. We propose that the membrane acts as a molecular switch to release inhibitory interactions, allowing for full complex assembly to proceed. Using cryo-EM, we visualize an assembly intermediate that mimics the conformation of AP-2 found in vesicles, with CCDC32 bound at both cargo binding sites and both membrane-binding sites, suggesting that assembly leads to deposition of active complexes on the plasma membrane.
细胞已经进化出多种组装伴侣蛋白,以协助在拥挤的细胞质中形成大分子复合物这一艰难过程。网格蛋白介导的内吞作用中的主要货物衔接蛋白——衔接蛋白复合物2(AP-2)的组装,受伴侣蛋白AAGAB和CCDC32调控,缺失这两种蛋白会导致所有AP-2亚基丢失。据认为,AAGAB和CCDC32依次作用,从其组成的异二聚体组装AP-2四聚体。然而,CCDC32与AP-2相互作用的分子要求和结构后果尚不清楚。在这里,我们通过重组和整合结构分析,描述了CCDC32介导的AP-2组装的分子机制。首先,CCDC32与AP-2α亚基的附属结构域相互作用,除了α亚基上一个新的、但高度保守的口袋外,还使用与经典内吞调节因子相同的结合位点。CCDC32包含通常在跨膜货物中发现的货物分选基序,并使用经典的货物结合位点与AP-2异二聚体结合。此外,CCDC32中的两个两亲性螺旋与α/σ2异二聚体结合。令人惊讶的是,在溶液中,我们发现CCDC32会阻止复合物组装,并积极拆解AP-2四聚体。抑制作用需要CCDC32的两亲性螺旋,它们也介导与含PIP2的膜的结合。含PIP2的膜的存在稳定了组装的最后阶段。我们提出,膜充当分子开关,释放抑制性相互作用,使完整复合物的组装得以进行。通过冷冻电镜,我们观察到一种组装中间体,它模拟了在囊泡中发现的AP-2的构象,CCDC32结合在两个货物结合位点和两个膜结合位点上,这表明组装导致活性复合物沉积在质膜上。