Misra Biswapriya B, van der Hooft Justin J J
Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA.
Glasgow Polyomics, University of Glasgow, Glasgow, UK.
Electrophoresis. 2016 Jan;37(1):86-110. doi: 10.1002/elps.201500417. Epub 2015 Nov 17.
Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources--in the form of tools, software, and databases--is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table.
数据处理和解读是高通量代谢组学实验中最具挑战性和耗时的步骤,无论用于数据采集的分析平台(基于质谱或核磁共振光谱)如何。代谢组学中不断改进的仪器产生了越来越复杂的数据集,这就需要更多更好的数据处理和分析软件以及计算机方法来理解所得数据。然而,目前缺乏一个全面的信息来源来描述以工具、软件和数据库形式出现的最新开发和发布的代谢组学资源的效用。因此,在这里我们提供了一个免费的、开源的工具、算法和框架的概述,以使即将到来的和已有的代谢组学研究人员了解最近的进展,试图推进和促进他们代谢组学研究中的数据处理工作流程。主要主题包括基于质谱和核磁共振的代谢组学中数据处理、数据注释和数据可视化的工具和研究。本综述中描述的大多数工具都致力于非靶向代谢组学工作流程;然而,也描述了一些更专业的工具。所有描述的工具和资源,包括它们对分析和计算平台的依赖性,都总结在一个概述表中。