Suppr超能文献

小脑中间神经元电路模型中的时间整合与1/幂缩放

Temporal integration and 1/ power scaling in a circuit model of cerebellar interneurons.

作者信息

Maex Reinoud, Gutkin Boris

机构信息

Department of Cognitive Sciences, École Normale Supérieure, PSL Research University, Paris, France; and

Department of Cognitive Sciences, École Normale Supérieure, PSL Research University, Paris, France; and.

出版信息

J Neurophysiol. 2017 Jul 1;118(1):471-485. doi: 10.1152/jn.00789.2016. Epub 2017 Apr 26.

Abstract

Inhibitory interneurons interconnected via electrical and chemical (GABA receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/ at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory. The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we propose that this coupling enhances the integration time constant, and hence the memory trace, of the circuit.

摘要

通过电突触和化学(GABA受体)突触相互连接的抑制性中间神经元在几个脑区形成广泛的回路。它们被认为通过对主神经元的快速前馈控制参与时间安排和同步。然而,理论研究表明,虽然自我抑制确实会缩短反应持续时间,但相比之下,侧向抑制可能通过逐渐去抑制的过程产生缓慢的反应成分。在这里,我们模拟了小脑皮质分子层的中间神经元(星状细胞和篮状细胞)回路,并观察到回路时间常数可能会根据参数值增加到1秒以上。积分时间既与抑制强度成比例,当抑制被阻断时完全消失,也与平均连接距离成比例,平均连接距离决定了侧向抑制和自我抑制之间的平衡。电突触可以通过限制中间神经元之间的异质性并引入缓慢的电容电流进一步延长积分时间。该模型可以解释一些观察结果,例如离束抑制的缓慢时间进程、前庭旋转期间中间神经元的相位滞后或浦肯野细胞的相位超前。有趣的是,中间神经元的尖峰序列在低频时显示出近似为1/的功率。总之,小脑皮质中的星状细胞和篮状细胞以及一般的中间神经元回路不仅可以对主细胞提供快速抑制,还可以作为构建非常短期记忆的时间积分器。抑制性中间神经元最常见的功能是对主神经元的前馈控制。然而,在许多脑区,中间神经元通过化学和电突触紧密相连,但这种耦合的功能在很大程度上尚不清楚。基于对小脑皮质中间神经元回路的大规模模拟,我们提出这种耦合增强了回路的积分时间常数,从而增强了记忆痕迹。

相似文献

3
Synaptic integration in a model of cerebellar granule cells.小脑颗粒细胞模型中的突触整合
J Neurophysiol. 1994 Aug;72(2):999-1009. doi: 10.1152/jn.1994.72.2.999.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验