Centre for Integrative Physiology and Patrick Wild Centre, University of Edinburgh, Edinburgh Medical School: Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
Nat Commun. 2016 Dec 15;7:13722. doi: 10.1038/ncomms13722.
Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation-inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour.
前馈兴奋性和抑制性回路调节小脑输出,但在运动行为期间,这些回路如何相互作用以塑造浦肯野细胞的树突和体部兴奋性,仍未得到解决。在这里,我们进行了体内树突和体部膜片钳记录,并结合光遗传抑制中间神经元,以研究在自主运动期间,树突兴奋和抑制如何产生浦肯野细胞输出的双向(即增加或减少)变化。我们发现,颗粒细胞在运动过程中产生浦肯野细胞树突的持续去极化,而局部中间神经元的前馈抑制则平衡了这种去极化。树突兴奋-抑制平衡的细微差异产生了简单峰(SSp)输出的强大双向变化。通过选择性沉默分子层中间神经元破坏这种平衡会导致单向放电率变化、SSp 规则性增加和运动行为紊乱。我们的发现提供了一种机制性的理解,即前馈兴奋性和抑制性回路如何在运动行为期间塑造浦肯野细胞输出。