Suppr超能文献

谐波阱共振增强合成原子自旋-轨道耦合。

Harmonic trap resonance enhanced synthetic atomic spin-orbit coupling.

作者信息

Wu Ling-Na, Luo Xin-Yu, Xu Zhi-Fang, Ueda Masahito, Wang Ruquan, You L

机构信息

State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.

Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Sci Rep. 2017 Apr 27;7:46756. doi: 10.1038/srep46756.

Abstract

Spin-orbit coupling (SOC) plays an essential role in many exotic and interesting phenomena in condensed matter physics. In neutral-atom-based quantum simulations, synthetic SOC constitutes a key enabling element. The strength of SOC realized so far is limited by various reasons or constraints. This work reports tunable SOC synthesized with a gradient magnetic field (GMF) for atoms in a harmonic trap. Nearly ten-fold enhancement is observed when the GMF is modulated near the harmonic-trap resonance in comparison with the free-space situation. A theory is developed that well explains the experimental results. Our work offers a clear physical insight into and analytical understanding of how to tune the strength of atomic SOC synthesized with GMF using harmonic trap resonance.

摘要

自旋轨道耦合(SOC)在凝聚态物理中的许多奇异且有趣的现象中起着至关重要的作用。在基于中性原子的量子模拟中,合成自旋轨道耦合是一个关键的促成要素。迄今为止,所实现的自旋轨道耦合强度受到各种原因或限制的制约。这项工作报道了利用谐波阱中原子的梯度磁场(GMF)合成的可调谐自旋轨道耦合。与自由空间情况相比,当梯度磁场在谐波阱共振附近调制时,观察到近十倍的增强。发展了一种理论,该理论很好地解释了实验结果。我们的工作为如何利用谐波阱共振来调节由梯度磁场合成的原子自旋轨道耦合强度提供了清晰的物理见解和分析理解。

相似文献

1
Harmonic trap resonance enhanced synthetic atomic spin-orbit coupling.
Sci Rep. 2017 Apr 27;7:46756. doi: 10.1038/srep46756.
4
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate.
Nat Commun. 2019 Jan 22;10(1):375. doi: 10.1038/s41467-018-08119-4.
5
Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates.
Phys Rev Lett. 2012 Jan 20;108(3):035302. doi: 10.1103/PhysRevLett.108.035302. Epub 2012 Jan 19.
6
Spin-orbit coupling in quantum gases.
Nature. 2013 Feb 7;494(7435):49-54. doi: 10.1038/nature11841.
7
Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor.
Sci Adv. 2021 Jan 29;7(5). doi: 10.1126/sciadv.abe2892. Print 2021 Jan.
8
Piezoelectric manipulation of spin-orbit coupling in a Wurtzite heterostructure.
Phys Chem Chem Phys. 2023 Aug 30;25(34):23001-23011. doi: 10.1039/d3cp02902f.
9
Collective dynamics of a spin-orbit-coupled Bose-Einstein condensate.
Phys Rev E. 2016 Feb;93(2):022214. doi: 10.1103/PhysRevE.93.022214. Epub 2016 Feb 18.
10
Dynamical Spin-Orbit Coupling of a Quantum Gas.
Phys Rev Lett. 2019 Oct 18;123(16):160404. doi: 10.1103/PhysRevLett.123.160404.

本文引用的文献

2
Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.
Science. 2016 Oct 7;354(6308):83-88. doi: 10.1126/science.aaf6689.
3
Dynamical Generation of Topological Magnetic Lattices for Ultracold Atoms.
Phys Rev Lett. 2016 Apr 8;116(14):143003. doi: 10.1103/PhysRevLett.116.143003. Epub 2016 Apr 7.
5
Creating State-Dependent Lattices for Ultracold Fermions by Magnetic Gradient Modulation.
Phys Rev Lett. 2015 Aug 14;115(7):073002. doi: 10.1103/PhysRevLett.115.073002. Epub 2015 Aug 13.
6
Tunable spin-orbit coupling via strong driving in ultracold-atom systems.
Phys Rev Lett. 2015 Mar 27;114(12):125301. doi: 10.1103/PhysRevLett.114.125301. Epub 2015 Mar 24.
7
Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice.
Phys Rev Lett. 2015 Feb 20;114(7):070401. doi: 10.1103/PhysRevLett.114.070401. Epub 2015 Feb 17.
8
Experimental realization of the topological Haldane model with ultracold fermions.
Nature. 2014 Nov 13;515(7526):237-40. doi: 10.1038/nature13915.
9
Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.
Phys Rev Lett. 2013 Nov 1;111(18):185302. doi: 10.1103/PhysRevLett.111.185302. Epub 2013 Oct 28.
10
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.
Phys Rev Lett. 2013 Nov 1;111(18):185301. doi: 10.1103/PhysRevLett.111.185301. Epub 2013 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验