State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.
Nanoscale. 2017 May 11;9(18):6136-6144. doi: 10.1039/c7nr01135k.
In this work, three different CuSCN nanostructures (NSs), hexagonal prism-like (3D), pyramid-like (2D) and nanowire structures (NWs) are first applied to inverted heterojunction perovskite solar cells as p-type inorganic hole transport layers (HTLs) using a moderate electrodeposition method at room temperature. It is revealed that the crystal structure and the thickness of the CuSCN layer can dramatically regulate the morphology and the crystal orientation behavior of perovskite absorbing layers, which will further have a significant influence on the following device performance. Compared with the other two nanostructured CuSCN HTLs, devices based on 3D structured CuSCN HTLs exhibit better performance mainly attributed to the high crystalline quality of perovskite films controlled by the well-oriented hexagonal prism-like nanostructures of CuSCN. After optimization, a maximum power conversion efficiency (PCE) of 11.40% has been obtained with 3D CuSCN which has a thickness of 200 nm. It is the highest value among the current reports using nanostructured CuSCN as an inorganic HTL in inverted PSCs. The dominating effect of CuSCN nanostructures on the crystal quality of perovskites provides guidelines for future material optimization and device efficiency enhancement.
在这项工作中,首次将三种不同的 CuSCN 纳米结构(NSs),即六方棱柱状(3D)、金字塔状(2D)和纳米线状结构(NWs),应用于倒置异质结钙钛矿太阳能电池作为 p 型无机空穴传输层(HTLs),采用室温下温和的电沉积方法。结果表明,CuSCN 层的晶体结构和厚度可以显著调节钙钛矿吸收层的形态和晶体取向行为,这将进一步对后续器件性能产生重大影响。与其他两种纳米结构的 CuSCN HTLs 相比,基于 3D 结构的 CuSCN HTLs 的器件表现出更好的性能,这主要归因于 CuSCN 的各向异性六方棱柱纳米结构控制的钙钛矿薄膜的高结晶质量。经过优化,具有 200nm 厚度的 3D CuSCN 获得了 11.40%的最高功率转换效率(PCE)。这是目前使用纳米结构 CuSCN 作为倒置 PSCs 中的无机 HTL 的最高值。CuSCN 纳米结构对钙钛矿晶体质量的主导作用为未来的材料优化和器件效率提升提供了指导。