Suppr超能文献

监测环境中纳米粒子的等离子体捕获与释放

Plasmonic Trapping and Release of Nanoparticles in a Monitoring Environment.

作者信息

Kim Jung-Dae, Lee Yong-Gu

机构信息

Division of Scientific Instrumentation, Korea Basic Science Institute (KBSI).

School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST);

出版信息

J Vis Exp. 2017 Apr 4(122):55258. doi: 10.3791/55258.

Abstract

Plasmonic tweezers use surface plasmon polaritons to confine polarizable nanoscale objects. Among the various designs of plasmonic tweezers, only a few can observe immobilized particles. Moreover, a limited number of studies have experimentally measured the exertable forces on the particles. The designs can be classified as the protruding nanodisk type or the suppressed nanohole type. For the latter, microscopic observation is extremely challenging. In this paper, a new plasmonic tweezer system is introduced to monitor particles, both in directions parallel and orthogonal to the symmetric axis of a plasmonic nanohole structure. This feature enables us to observe the movement of each particle near the rim of the nanohole. Furthermore, we can quantitatively estimate the maximal trapping forces using a new fluidic channel.

摘要

表面等离子体镊子利用表面等离子体激元来捕获可极化的纳米级物体。在表面等离子体镊子的各种设计中,只有少数能够观察到固定的粒子。此外,仅有有限数量的研究通过实验测量了作用在粒子上的可施加力。这些设计可分为突出纳米盘型或抑制纳米孔型。对于后者,微观观察极具挑战性。在本文中,我们引入了一种新的表面等离子体镊子系统,用于在与表面等离子体纳米孔结构对称轴平行和正交的方向上监测粒子。这一特性使我们能够观察纳米孔边缘附近每个粒子的运动。此外,我们可以使用一种新的流体通道定量估计最大捕获力。

相似文献

1
Plasmonic Trapping and Release of Nanoparticles in a Monitoring Environment.
J Vis Exp. 2017 Apr 4(122):55258. doi: 10.3791/55258.
2
A measurement of the maximal forces in plasmonic tweezers.
Nanotechnology. 2015 Oct 23;26(42):425203. doi: 10.1088/0957-4484/26/42/425203. Epub 2015 Sep 30.
4
Three dimensional nanoparticle trapping enhanced by surface plasmon resonance.
Opt Express. 2010 Dec 20;18(26):27619-26. doi: 10.1364/OE.18.027619.
5
Scalable trapping of single nanosized extracellular vesicles using plasmonics.
Nat Commun. 2023 Aug 9;14(1):4801. doi: 10.1038/s41467-023-40549-7.
6
Light trapping with plasmonic particles: beyond the dipole model.
Opt Express. 2011 Dec 5;19(25):25230-41. doi: 10.1364/OE.19.025230.
7
A 3D Biocompatible Plasmonic Tweezer for Single Cell Manipulation.
Small Methods. 2023 Feb;7(2):e2201379. doi: 10.1002/smtd.202201379. Epub 2023 Jan 8.
8
Optical trapping of nanoparticles.
J Vis Exp. 2013 Jan 15(71):e4424. doi: 10.3791/4424.
9
Laser trapping of colloidal metal nanoparticles.
ACS Nano. 2015;9(4):3453-69. doi: 10.1021/acsnano.5b00286. Epub 2015 Apr 1.

本文引用的文献

1
A measurement of the maximal forces in plasmonic tweezers.
Nanotechnology. 2015 Oct 23;26(42):425203. doi: 10.1088/0957-4484/26/42/425203. Epub 2015 Sep 30.
2
3
Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications.
Biomed Opt Express. 2014 Jul 3;5(8):2471-80. doi: 10.1364/BOE.5.002471. eCollection 2014 Aug 1.
4
Three-dimensional manipulation with scanning near-field optical nanotweezers.
Nat Nanotechnol. 2014 Apr;9(4):295-9. doi: 10.1038/nnano.2014.24. Epub 2014 Mar 2.
5
Transport and trapping in two-dimensional nanoscale plasmonic optical lattice.
Nano Lett. 2013 Sep 11;13(9):4118-22. doi: 10.1021/nl4016254. Epub 2013 Aug 20.
7
Nanostructured potential of optical trapping using a plasmonic nanoblock pair.
Nano Lett. 2013 May 8;13(5):2146-50. doi: 10.1021/nl4005892. Epub 2013 Apr 3.
8
Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.
Nano Lett. 2012 Feb 8;12(2):796-801. doi: 10.1021/nl203811q. Epub 2012 Jan 9.
9
Optical trapping of a single protein.
Nano Lett. 2012 Jan 11;12(1):402-6. doi: 10.1021/nl203719v. Epub 2011 Dec 16.
10
Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
Nat Commun. 2011 Dec 13;2:582. doi: 10.1038/ncomms1592.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验