Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA.
Nat Commun. 2023 Aug 9;14(1):4801. doi: 10.1038/s41467-023-40549-7.
Heterogeneous nanoscale extracellular vesicles (EVs) are of significant interest for disease detection, monitoring, and therapeutics. However, trapping these nano-sized EVs using optical tweezers has been challenging due to their small size. Plasmon-enhanced optical trapping offers a solution. Nevertheless, existing plasmonic tweezers have limited throughput and can take tens of minutes for trapping for low particle concentrations. Here, we present an innovative approach called geometry-induced electrohydrodynamic tweezers (GET) that overcomes these limitations. GET generates multiple electrohydrodynamic potentials, allowing parallel transport and trapping of single EVs within seconds. By integrating nanoscale plasmonic cavities at the center of each GET trap, single EVs can be placed near plasmonic cavities, enabling instant plasmon-enhanced optical trapping upon laser illumination without detrimental heating effects. These non-invasive scalable hybrid nanotweezers open new horizons for high-throughput tether-free plasmon-enhanced single EV trapping and spectroscopy. Other potential areas of impact include nanoplastics characterization, and scalable hybrid integration for quantum photonics.
用于疾病检测、监测和治疗的异质纳米级细胞外囊泡 (EVs) 引起了人们的极大兴趣。然而,由于它们的体积小,使用光学镊子捕获这些纳米级 EVs 具有挑战性。等离子体增强光学捕获提供了一种解决方案。然而,现有的等离子体镊子的吞吐量有限,对于低浓度的粒子,捕获可能需要数十分钟。在这里,我们提出了一种称为几何诱导的电动力学镊子 (GET) 的创新方法,克服了这些限制。GET 产生多个电动力学势,可以在几秒钟内平行传输和捕获单个 EV。通过在每个 GET 陷阱的中心集成纳米级等离子体腔,单个 EV 可以被放置在等离子体腔附近,从而在激光照射时立即进行等离子体增强光学捕获,而不会产生有害的加热效应。这些非侵入性可扩展的混合纳米镊子为无系绳的等离子体增强单 EV 捕获和光谱学开辟了新的前景。其他潜在的影响领域包括纳米塑料表征和用于量子光子学的可扩展混合集成。