Fukuda Tetsuya, Nomura Masaharu, Kato Yasufumi, Tojo Hiromasa, Fujii Kiyonaga, Nagao Toshitaka, Bando Yasuhiko, Fehniger Thomas E, Marko-Varga György, Nakamura Haruhiko, Kato Harubumi, Nishimura Toshihide
Biosys Technologies, Inc., Tokyo, Japan.
Department of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan.
PLoS One. 2017 Apr 27;12(4):e0176219. doi: 10.1371/journal.pone.0176219. eCollection 2017.
Selected reaction monitoring mass spectrometry (SRM-MS) -based semi-quantitation was performed to assess the validity of 46 selected candidate proteins for specifically diagnosing large-cell neuroendocrine lung carcinoma (LCNEC) and differentiating it from other lung cancer subtypes. The scaling method was applied in this study using specific SRM peak areas (AUCs) derived from the endogenous reference protein that normalizes all SRM AUCs obtained for the candidate proteins. In a screening verification study, we found that seven out of the 46 candidate proteins were statistically significant for the LCNEC phenotype, including 4F2hc cell surface antigen heavy chain (4F2hc/CD98) (p-ANOVA ≤ 0.0012), retinal dehydrogenase 1 (p-ANOVA ≤ 0.0029), apolipoprotein A-I (p-ANOVA ≤ 0.0004), β-enolase (p-ANOVA ≤ 0.0043), creatine kinase B-type (p-ANOVA ≤ 0.0070), and galectin-3-binding protein (p-ANOVA = 0.0080), and phosphatidylethanolamine-binding protein 1 (p-ANOVA ≤ 0.0012). In addition, we also identified candidate proteins specific to the small-cell lung carcinoma (SCLC) subtype. These candidates include brain acid soluble protein 1 (p-ANOVA < 0.0001) and γ-enolase (p-ANOVA ≤ 0.0013). This new relative quantitation-based approach utilizing the scaling method can be applied to assess hundreds of protein candidates obtained from discovery proteomic studies as a first step of the verification phase in biomarker development processes.
采用基于选择反应监测质谱(SRM-MS)的半定量方法,评估46种选定的候选蛋白对大细胞神经内分泌肺癌(LCNEC)进行特异性诊断并与其他肺癌亚型进行区分的有效性。本研究采用缩放方法,使用源自内源性参考蛋白的特定SRM峰面积(AUC),对候选蛋白获得的所有SRM AUC进行标准化。在一项筛选验证研究中,我们发现46种候选蛋白中有7种对LCNEC表型具有统计学意义,包括4F2hc细胞表面抗原重链(4F2hc/CD98)(方差分析p值≤0.0012)、视网膜脱氢酶1(方差分析p值≤0.0029)、载脂蛋白A-I(方差分析p值≤0.0004)、β-烯醇化酶(方差分析p值≤0.0043)、B型肌酸激酶(方差分析p值≤0.0070)、半乳糖凝集素-3结合蛋白(方差分析p值=0.0080)和磷脂酰乙醇胺结合蛋白1(方差分析p值≤0.0012)。此外,我们还鉴定出了小细胞肺癌(SCLC)亚型特有的候选蛋白。这些候选蛋白包括脑酸溶性蛋白1(方差分析p值<0.0001)和γ-烯醇化酶(方差分析p值≤0.0013)。这种利用缩放方法的基于相对定量的新方法可用于评估从发现蛋白质组学研究中获得的数百种候选蛋白,作为生物标志物开发过程中验证阶段的第一步。