Suppr超能文献

用于活细胞双色成像和超分辨率显微镜的笼式荧光团特异性蛋白质标记。

Specific protein labeling with caged fluorophores for dual-color imaging and super-resolution microscopy in living cells.

作者信息

Hauke Sebastian, von Appen Alexander, Quidwai Tooba, Ries Jonas, Wombacher Richard

机构信息

Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls-University Heidelberg , Im Neuenheimer Feld 364 , 69120 Heidelberg , Germany . Email:

European Molecular Biology Laboratory , Meyerhofstraße 1 , 69117 Heidelberg , Germany.

出版信息

Chem Sci. 2017 Jan 1;8(1):559-566. doi: 10.1039/c6sc02088g. Epub 2016 Sep 5.

Abstract

We present new fluorophore-conjugates for dual-color photoactivation and super-resolution imaging inside live mammalian cells. These custom-designed, photo-caged Q-rhodamines and fluoresceins are cell-permeable, bright and localize specifically to intracellular targets. We utilized established orthogonal protein labeling strategies to precisely attach the photoactivatable fluorophores to proteins with subsequent activation of fluorescence by irradiation with UV light. That way, diffusive cytosolic proteins, histone proteins as well as filigree mitochondrial networks and focal adhesion proteins were visualized inside living cells. We applied the new photoactivatable probes in inverse fluorescence recovery after photo-bleaching (iFRAP) experiments, gaining real-time access to protein dynamics from live biological settings with resolution in space and time. Finally, we used the caged Q-rhodamine for photo-activated localization microscopy (PALM) on both fixed and live mammalian cells, where the superior molecular brightness and photo-stability directly resulted in improved localization precisions for different protein targets.

摘要

我们展示了用于活的哺乳动物细胞内双色光激活和超分辨率成像的新型荧光团共轭物。这些定制设计的、光笼式Q-罗丹明和荧光素具有细胞渗透性,亮度高且能特异性定位于细胞内靶点。我们利用已确立的正交蛋白质标记策略,将光激活荧光团精确地连接到蛋白质上,随后通过紫外光照射激活荧光。通过这种方式,可在活细胞内观察到扩散的胞质蛋白、组蛋白以及精细的线粒体网络和粘着斑蛋白。我们将新型光激活探针应用于光漂白后的反向荧光恢复(iFRAP)实验,能够从活生物环境中实时获取蛋白质动力学信息,具备时空分辨率。最后,我们将笼式Q-罗丹明用于固定和活的哺乳动物细胞的光激活定位显微镜(PALM),其卓越的分子亮度和光稳定性直接提高了不同蛋白质靶点的定位精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc1/5351804/5528e5db59cb/c6sc02088g-s1.jpg

相似文献

2
Nitroso-Caged Rhodamine: A Superior Green Light-Activatable Fluorophore for Single-Molecule Localization Super-Resolution Imaging.
Anal Chem. 2021 Jun 8;93(22):7833-7842. doi: 10.1021/acs.analchem.1c00175. Epub 2021 May 24.
3
Oxime as a general photocage for the design of visible light photo-activatable fluorophores.
Chem Sci. 2021 Nov 22;12(47):15572-15580. doi: 10.1039/d1sc05351e. eCollection 2021 Dec 8.
4
A Universal Photoactivatable Tag Attached to Fluorophores Enables Their Use for Single-Molecule Imaging.
Angew Chem Int Ed Engl. 2022 Nov 14;61(46):e202211767. doi: 10.1002/anie.202211767. Epub 2022 Oct 17.
5
Photoactivation of silicon rhodamines via a light-induced protonation.
Nat Commun. 2019 Oct 8;10(1):4580. doi: 10.1038/s41467-019-12480-3.
7
Photo-uncaging Triggers on Self-Blinking to Control Single-Molecule Fluorescence Kinetics for Super-resolution Imaging.
ACS Nano. 2024 Jul 16;18(28):18477-18484. doi: 10.1021/acsnano.4c03809. Epub 2024 Jun 28.
8
Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.
Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1723-7. doi: 10.1002/anie.201509649. Epub 2015 Dec 11.
9
Green-Emitting Rhodamine Dyes for Vital Labeling of Cell Organelles Using STED Super-Resolution Microscopy.
Chembiochem. 2019 Sep 2;20(17):2248-2254. doi: 10.1002/cbic.201900177. Epub 2019 May 21.

引用本文的文献

2
Photoactivation of BODIPY Fluorescence with Green Light.
J Org Chem. 2025 Jun 20;90(24):8214-8227. doi: 10.1021/acs.joc.5c00668. Epub 2025 Jun 6.
3
Super-resolution imaging of proteins inside live mammalian cells with mLIVE-PAINT.
Protein Sci. 2025 Feb;34(2):e70008. doi: 10.1002/pro.70008.
5
Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy.
ACS Cent Sci. 2023 Jul 26;9(8):1581-1590. doi: 10.1021/acscentsci.3c00746. eCollection 2023 Aug 23.
6
Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging.
Front Neurosci. 2023 Jul 13;17:1213265. doi: 10.3389/fnins.2023.1213265. eCollection 2023.
7
Photoactivatable BODIPYs for Live-Cell PALM.
Molecules. 2023 Mar 7;28(6):2447. doi: 10.3390/molecules28062447.
8
9-Cyano-10-telluriumpyronin Derivatives as Red-light-activatable Raman Probes.
Chem Asian J. 2023 Jan 17;18(2):e202201086. doi: 10.1002/asia.202201086. Epub 2022 Dec 13.
9
Multifunctional stimuli-responsive chemogenetic platform for conditional multicolor cell-selective labeling.
Chem Sci. 2022 Oct 3;13(41):12187-12197. doi: 10.1039/d2sc03100k. eCollection 2022 Oct 26.
10
-Cyanorhodamines: cell-permeant, photostable and bathochromically shifted analogues of fluoresceins.
Chem Sci. 2022 Jun 27;13(28):8297-8306. doi: 10.1039/d2sc02448a. eCollection 2022 Jul 20.

本文引用的文献

1
Live-cell protein labelling with nanometre precision by cell squeezing.
Nat Commun. 2016 Jan 29;7:10372. doi: 10.1038/ncomms10372.
2
Photoactivatable Synthetic Dyes for Fluorescence Imaging at the Nanoscale.
J Phys Chem Lett. 2012 Sep 6;3(17):2379-85. doi: 10.1021/jz301021e. Epub 2012 Aug 15.
3
SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging.
Angew Chem Int Ed Engl. 2015 Aug 24;54(35):10216-9. doi: 10.1002/anie.201503215. Epub 2015 Jul 15.
4
Imaging live-cell dynamics and structure at the single-molecule level.
Mol Cell. 2015 May 21;58(4):644-59. doi: 10.1016/j.molcel.2015.02.033.
5
Photocontrollable fluorescent proteins for superresolution imaging.
Annu Rev Biophys. 2014;43:303-29. doi: 10.1146/annurev-biophys-051013-022836.
6
A caged, localizable rhodamine derivative for superresolution microscopy.
ACS Chem Biol. 2012 Feb 17;7(2):289-93. doi: 10.1021/cb2002889. Epub 2011 Nov 4.
7
Facile and general synthesis of photoactivatable xanthene dyes.
Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11206-9. doi: 10.1002/anie.201104571. Epub 2011 Sep 26.
8
Chemical tags: applications in live cell fluorescence imaging.
J Biophotonics. 2011 Jun;4(6):391-402. doi: 10.1002/jbio.201100018. Epub 2011 May 12.
10
A new wave of cellular imaging.
Annu Rev Cell Dev Biol. 2010;26:285-314. doi: 10.1146/annurev-cellbio-100109-104048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验