Mu Xin, Chen Fu-Der, Dang Ka My, Brunk Michael G K, Li Jianfeng, Wahn Hannes, Stalmashonak Andrei, Ding Peisheng, Luo Xianshu, Chua Hongyao, Lo Guo-Qiang, Poon Joyce K S, Sacher Wesley D
Max Planck Institute of Microstructure Physics, Halle, Germany.
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
Front Neurosci. 2023 Jul 13;17:1213265. doi: 10.3389/fnins.2023.1213265. eCollection 2023.
Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.
芯片级光子-电子集成技术的进步,正在催生新一代可由代工厂制造的植入式硅神经探针,这些探针集成了纳米光子波导和微电极,用于神经科学研究中的光遗传学刺激和电生理记录。通过集成微流体技术进一步扩展神经探针的功能,是实现神经化学物质注射和采样能力的直接途径。在这项工作中,我们使用双光子聚合3D打印技术,将微流体通道集成到光子神经探针上,该探针包括氮化硅纳米光子波导和光栅发射器。3D打印的可定制性使得微流体具有独特的几何形状,能够与每个神经探针的形状相契合,从而实现微流体与各种现有神经探针的集成,同时避免了单片微流体集成的复杂性。我们通过在琼脂糖凝胶中注射荧光素以及在溶液和固定脑组织中对笼形荧光素进行光解,展示了神经探针的光子和流体功能。