Suppr超能文献

负载于氧化镨上的低结晶度钌纳米层作为合成氨的活性催化剂。

A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

作者信息

Sato Katsutoshi, Imamura Kazuya, Kawano Yukiko, Miyahara Shin-Ichiro, Yamamoto Tomokazu, Matsumura Syo, Nagaoka Katsutoshi

机构信息

Elements Strategy Initiative for Catalysts and Batteries , Kyoto University , 1-30 Goryo-Ohara, Nishikyo-ku , Kyoto 615-8245 , Japan.

Department of Applied Chemistry , Faculty of Engineering , Oita University , 700 Dannoharu , Oita 870-1192 , Japan . Email:

出版信息

Chem Sci. 2017 Jan 1;8(1):674-679. doi: 10.1039/c6sc02382g. Epub 2016 Sep 19.

Abstract

Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/PrO without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of PrO. Furthermore, CO temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH synthesis, cleavage of the N[triple bond, length as m-dash]N bond. We expect that the use of this catalyst will be a starting point for achieving efficient ammonia synthesis.

摘要

氨是化肥生产的关键化学原料,也是一种潜在的能量载体。然而,目前合成氨的方法——哈伯-博施法,消耗大量能源。为了降低能耗,迫切需要一种能在温和条件(低温和低压)下催化氨合成的工艺和物质。在此我们表明,不含任何掺杂剂的Ru/PrO在温和条件下催化氨合成的速率是其他高活性催化剂报道速率的1.8倍。扫描透射电子显微镜观察和能量色散X射线分析表明,在PrO表面形成了低结晶度的钌纳米层。此外,CO程序升温脱附表明该催化剂具有强碱性。这些独特的结构和电子特性被认为协同加速了NH合成的速率决定步骤,即N≡N键的断裂。我们期望这种催化剂的使用将成为实现高效氨合成的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/5297937/959815c10bef/c6sc02382g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验