Manabe R, Nakatsubo H, Gondo A, Murakami K, Ogo S, Tsuneki H, Ikeda M, Ishikawa A, Nakai H, Sekine Y
Department of Applied Chemistry , Waseda University , 3-4-1, Okubo, Shinjuku , Tokyo 169-8555 , Japan . Email:
Nippon Shokubai Co. Ltd. , 5-8, Nishiotabi, Suita , Osaka 564-0034 , Japan.
Chem Sci. 2017 Aug 1;8(8):5434-5439. doi: 10.1039/c7sc00840f. Epub 2017 Jun 5.
Highly efficient ammonia synthesis at a low temperature is desirable for future energy and material sources. We accomplished efficient electrocatalytic low-temperature ammonia synthesis with the highest yield ever reported. The maximum ammonia synthesis rate was 30 099 μmol g h over a 9.9 wt% Cs/5.0 wt% Ru/SrZrO catalyst, which is a very high rate. Proton hopping on the surface of the heterogeneous catalyst played an important role in the reaction, revealed by IR measurements. Hopping protons activate N even at low temperatures, and they moderate the harsh reaction condition requirements. Application of an electric field to the catalyst resulted in a drastic decrease in the apparent activation energy from 121 kJ mol to 37 kJ mol. N dissociative adsorption is markedly promoted by the application of the electric field, as evidenced by DFT calculations. The process described herein opens the door for small-scale, on-demand ammonia synthesis.
高效的低温氨合成对于未来的能源和材料来源而言是很有必要的。我们实现了高效的电催化低温氨合成,其产率为有史以来报道的最高值。在9.9 wt% Cs/5.0 wt% Ru/SrZrO催化剂上,最大氨合成速率为30099 μmol g⁻¹ h⁻¹,这是一个非常高的速率。通过红外测量发现,质子在多相催化剂表面的跳跃在反应中起着重要作用。跳跃的质子即使在低温下也能激活N,并且缓和了苛刻的反应条件要求。对催化剂施加电场导致表观活化能从121 kJ mol⁻¹急剧降至37 kJ mol⁻¹。密度泛函理论计算表明,电场的施加显著促进了N的解离吸附。本文所述的过程为小规模按需氨合成打开了大门。