Ceccoli Romina D, Bianchi Dario A, Fink Michael J, Mihovilovic Marko D, Rial Daniela V
Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
AMB Express. 2017 Dec;7(1):87. doi: 10.1186/s13568-017-0390-5. Epub 2017 Apr 27.
Baeyer-Villiger monooxygenases are recognized by their ability and high selectivity as oxidative biocatalysts for the generation of esters or lactones using ketones as starting materials. These enzymes represent valuable tools for biooxidative syntheses since they can catalyze reactions that otherwise involve strong oxidative reagents. In this work, we present a novel enzyme, the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa. This protein is phylogenetically distant from other well-characterized BVMOs. In order to study this new enzyme, we cloned its gene, expressed it in Escherichia coli and characterized the substrate scope of the Baeyer-Villiger monooxygenase from L. biflexa as a whole-cell biocatalyst. For this purpose, we performed the screening of a collection of ketones with variable structures and sizes, namely acyclic ketones, aromatic ketones, cyclic ketones, and fused ketones. As a result, we observed that this biocatalyst readily oxidized linear- and branched- medium-chain ketones, alkyl levulinates and linear ketones with aromatic substituents with excellent regioselectivity. In addition, this enzyme catalyzed the oxidation of 2-substituted cycloketone derivatives but showed an unusual selection against substituents in positions 3 or 4 of the ring.
拜耳-维利格单加氧酶以其利用酮作为起始原料生成酯或内酯的氧化生物催化能力和高选择性而闻名。这些酶是生物氧化合成的宝贵工具,因为它们可以催化那些否则需要强氧化试剂参与的反应。在这项工作中,我们展示了一种新型酶,即来自双曲钩端螺旋体的I型拜耳-维利格单加氧酶。这种蛋白质在系统发育上与其他已充分表征的拜耳-维利格单加氧酶有很大差异。为了研究这种新酶,我们克隆了它的基因,在大肠杆菌中表达,并将双曲钩端螺旋体拜耳-维利格单加氧酶作为全细胞生物催化剂来表征其底物范围。为此,我们对一系列具有不同结构和大小的酮进行了筛选,即无环酮、芳香酮、环酮和稠合酮。结果,我们观察到这种生物催化剂能够轻易地氧化直链和支链中链酮、乙酰丙酸烷基酯以及带有芳香取代基的直链酮,具有出色的区域选择性。此外,这种酶催化了2-取代环酮衍生物的氧化,但对环上3位或4位的取代基表现出异常的选择性。