Gwenzi Willis, Chaukura Nhamo, Noubactep Chicgoua, Mukome Fungai N D
Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
Nanotechnology and Water Sustainability Research Unit (NanoWS), University of South Africa (UNISA), P.O. Box 392, UNISA, 0003, South Africa.
J Environ Manage. 2017 Jul 15;197:732-749. doi: 10.1016/j.jenvman.2017.03.087. Epub 2017 Apr 25.
Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems.
约6亿人无法获得安全饮用水,因此要实现可持续发展目标6(到2030年确保所有人都能获得水和卫生设施并实现可持续管理),就需要在未来13年内迅速将近期研究成果转化为切实可行且经济节约的解决方案。生物炭具有从水溶液中去除多种污染物的卓越能力,是一种尚未开发的饮用水处理技术。与现有的低成本方法(如砂滤、煮沸、太阳能消毒、氯化处理)相比,生物炭水处理具有几个潜在优点:(1)生物炭是一种低成本的可再生吸附剂,使用容易获得的生物材料和技术制成,适合低收入社区;(2)现有方法主要去除病原体,而生物炭能去除化学、生物和物理污染物;(3)生物炭能保持水的感官特性,而现有方法会产生致癌副产物(如氯化处理)和/或增加化学污染物浓度(如煮沸)。生物炭还有附带益处,包括为家庭供暖和烹饪提供清洁能源,用过的生物炭施用于土壤可改善土壤质量和作物产量。将生物炭纳入水和卫生系统可将线性物质流转变为循环物质流,这与黑土卫生设施理念一致。生物炭水处理缺乏设计信息以及存在环境和公共卫生风险,限制了生物炭技术的发展。在三个主题下突出了七个未来研究假设:(1)生物炭水处理的设计与优化;(2)与污染物沿生物炭 - 土壤 - 食物 - 人类途径转移相关的生态毒理学和人类健康风险;(3)生物炭水处理系统的碳足迹和能源足迹的生命周期分析。