Grady Sarah L, Malfatti Stephanie A, Gunasekera Thusitha S, Dalley Brian K, Lyman Matt G, Striebich Richard C, Mayhew Michael B, Zhou Carol L, Ruiz Oscar N, Dugan Larry C
Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
Environmental Microbiology Group, University of Dayton Research Institute, University of Dayton, Dayton, OH, 45469, USA.
BMC Genomics. 2017 Apr 28;18(1):334. doi: 10.1186/s12864-017-3708-4.
Examination of complex biological systems has long been achieved through methodical investigation of the system's individual components. While informative, this strategy often leads to inappropriate conclusions about the system as a whole. With the advent of high-throughput "omic" technologies, however, researchers can now simultaneously analyze an entire system at the level of molecule (DNA, RNA, protein, metabolite) and process (transcription, translation, enzyme catalysis). This strategy reduces the likelihood of improper conclusions, provides a framework for elucidation of genotype-phenotype relationships, and brings finer resolution to comparative genomic experiments. Here, we apply a multi-omic approach to analyze the gene expression profiles of two closely related Pseudomonas aeruginosa strains grown in n-alkanes or glycerol.
The environmental P. aeruginosa isolate ATCC 33988 consumed medium-length (C-C) n-alkanes more rapidly than the laboratory strain PAO1, despite high genome sequence identity (average nucleotide identity >99%). Our data shows that ATCC 33988 induces a characteristic set of genes at the transcriptional, translational and post-translational levels during growth on alkanes, many of which differ from those expressed by PAO1. Of particular interest was the lack of expression from the rhl operon of the quorum sensing (QS) system, resulting in no measurable rhamnolipid production by ATCC 33988. Further examination showed that ATCC 33988 lacked the entire lasI/lasR arm of the QS response. Instead of promoting expression of QS genes, ATCC 33988 up-regulates a small subset of its genome, including operons responsible for specific alkaline proteases and sphingosine metabolism.
This work represents the first time results from RNA-seq, microarray, ribosome footprinting, proteomics, and small molecule LC-MS experiments have been integrated to compare gene expression in bacteria. Together, these data provide insights as to why strain ATCC 33988 is better adapted for growth and survival on n-alkanes.
长期以来,对复杂生物系统的研究是通过对系统的各个组成部分进行系统的调查来实现的。虽然这种策略能提供信息,但往往会得出关于整个系统的不恰当结论。然而,随着高通量“组学”技术的出现,研究人员现在可以在分子(DNA、RNA、蛋白质、代谢物)和过程(转录、翻译、酶催化)水平上同时分析整个系统。这种策略降低了得出错误结论的可能性,为阐明基因型-表型关系提供了框架,并为比较基因组实验带来了更高的分辨率。在这里,我们应用多组学方法来分析在正构烷烃或甘油中生长的两种密切相关的铜绿假单胞菌菌株的基因表达谱。
环境分离株铜绿假单胞菌ATCC 33988比实验室菌株PAO1更快速地消耗中等长度(C-C)正构烷烃,尽管它们的基因组序列同一性很高(平均核苷酸同一性>99%)。我们的数据表明,ATCC 33988在烷烃生长过程中在转录、翻译和翻译后水平上诱导了一组特征性基因,其中许多基因与PAO1表达的基因不同。特别有趣的是群体感应(QS)系统的rhl操纵子缺乏表达,导致ATCC 33988没有可测量的鼠李糖脂产生。进一步研究表明,ATCC 33988缺乏QS反应的整个lasI/lasR臂。ATCC 33988不是促进QS基因的表达,而是上调其基因组的一个小亚群,包括负责特定碱性蛋白酶和鞘氨醇代谢的操纵子。
这项工作首次整合了RNA测序、微阵列、核糖体足迹分析、蛋白质组学和小分子液相色谱-质谱实验的结果,以比较细菌中的基因表达。这些数据共同提供了关于为什么菌株ATCC 33988更适合在正构烷烃上生长和存活的见解。