Department of Physics, Beijing Normal University, Beijing 100875, China.
School of Science, Beijing Jiaotong University, Beijing 100044, China.
J Chem Phys. 2017 Apr 28;146(16):164901. doi: 10.1063/1.4981914.
Due to the very importance for both fundamental research and technological applications, smart materials with stimuli-responsive properties have been studied intensively. Theoretical investigation contributes to this endeavor through constructing and analyzing a model system which captures main features of the corresponding complex material, wherefrom useful insight can be provided to the trial-and-error experiments. We here report a theoretical study on the smart spherical nanoparticle grafted with light-responsive azobenzene-containing polymers. Utilizing the photoisomerization ability of the azobenzene group, nanoparticles can undergo a light-induced expansion-contraction transition. The wormlike chain based single chain in mean field theory, which has been developed by us recently, is used to investigate this transition in detail. Exploring a large parameter space, our results definitely determine the parameters, including the chain length and effective Kuhn length of grafted chain, nanoparticle radius, grafting density, and position of the azobenzene group along the chain contour, to admit optimum light-responsive behavior of the smart nanoparticle, which provides a guide for experimentalists to design this type of material in a rational manner.
由于智能材料具有刺激响应特性,因此对于基础研究和技术应用都非常重要。理论研究通过构建和分析能够捕捉相应复杂材料主要特征的模型系统来推动这一研究进展,从而为反复试验提供有用的见解。在这里,我们报告了一种关于接枝有光响应偶氮苯聚合物的智能球形纳米粒子的理论研究。利用偶氮苯基团的光致异构化能力,纳米粒子可以经历光诱导的膨胀-收缩转变。我们最近开发的基于蠕虫链的平均场理论单链被用于详细研究这种转变。通过探索大量参数空间,我们的结果明确确定了参数,包括接枝链的链长和有效寇恩长度、纳米粒子半径、接枝密度以及偶氮苯基团在链轮廓上的位置,以实现智能纳米粒子的最佳光响应行为,为实验人员以合理的方式设计这种类型的材料提供了指导。