Research and Development, Livestock Improvement Corporation, Hamilton, New Zealand 3240.
Research and Development, Livestock Improvement Corporation, Hamilton, New Zealand 3240.
J Dairy Sci. 2017 Jul;100(7):5472-5478. doi: 10.3168/jds.2016-12199. Epub 2017 Apr 27.
Single nucleotide polymorphisms have been the DNA variant of choice for genomic prediction, largely because of the ease of single nucleotide polymorphism genotype collection. In contrast, structural variants (SV), which include copy number variants (CNV), translocations, insertions, and inversions, have eluded easy detection and characterization, particularly in nonhuman species. However, evidence increasingly shows that SV not only contribute a substantial proportion of genetic variation but also have significant influence on phenotypes. Here we present the discovery of CNV in a prominent New Zealand dairy bull using long-read PacBio (Pacific Biosciences, Menlo Park, CA) sequencing technology and the Sniffles SV discovery tool (version 0.0.1; https://github.com/fritzsedlazeck/Sniffles). The CNV identified from long reads were compared with CNV discovered in the same bull from Illumina sequencing using CNVnator (read depth-based tool; Illumina Inc., San Diego, CA) as a means of validation. Subsequently, further validation was undertaken using whole-genome Illumina sequencing of 556 cattle representing the wider New Zealand dairy cattle population. Very limited overlap was observed in CNV discovered from the 2 sequencing platforms, in part because of the differences in size of CNV detected. Only a few CNV were therefore able to be validated using this approach. However, the ability to use CNVnator to genotype the 557 cattle for copy number across all regions identified as putative CNV allowed a genome-wide assessment of transmission level of copy number based on pedigree. The more highly transmissible a putative CNV region was observed to be, the more likely the distribution of copy number was multimodal across the 557 sequenced animals. Furthermore, visual assessment of highly transmissible CNV regions provided evidence supporting the presence of CNV across the sequenced animals. This transmission-based approach was able to confirm a subset of CNV that segregates in the New Zealand dairy cattle population. Genome-wide identification and validation of CNV is an important step toward their inclusion in genomic selection strategies.
单核苷酸多态性一直是基因组预测的首选 DNA 变体,这主要是因为单核苷酸多态性基因型的采集较为容易。相比之下,结构变异(SV)包括拷贝数变异(CNV)、易位、插入和倒位,难以被轻易检测和描述,尤其是在非人类物种中。然而,越来越多的证据表明,SV 不仅贡献了相当大一部分遗传变异,而且对表型也有显著影响。在这里,我们使用长读长 PacBio(太平洋生物科学公司,门洛帕克,加利福尼亚州)测序技术和 Sniffles SV 发现工具(版本 0.0.1;https://github.com/fritzsedlazeck/Sniffles)展示了在一头著名的新西兰奶牛公牛中 CNV 的发现。从长读长中鉴定的 CNV 与在同一公牛中使用 CNVnator(基于读取深度的工具;Illumina Inc.,圣地亚哥,加利福尼亚州)从 Illumina 测序中发现的 CNV 进行了比较,作为验证的一种手段。随后,使用更广泛的新西兰奶牛群体中的 556 头牛的全基因组 Illumina 测序进行了进一步验证。在来自 2 个测序平台的 CNV 发现中,观察到非常有限的重叠,部分原因是检测到的 CNV 大小存在差异。因此,只有少数 CNV 可以使用这种方法进行验证。然而,使用 CNVnator 对 557 头牛进行所有被认为是潜在 CNV 区域的拷贝数基因分型的能力,允许根据系谱对基于拷贝数的传递水平进行全基因组评估。观察到的潜在 CNV 区域的可传递性越高,557 个测序动物中拷贝数的分布越有可能是多峰的。此外,对高度可传递的 CNV 区域的直观评估提供了证据,证明在测序动物中存在 CNV。这种基于传递的方法能够确认在新西兰奶牛群体中存在的 CNV 的一个子集。对 CNV 的全基因组鉴定和验证是将其纳入基因组选择策略的重要步骤。
Methods Mol Biol. 2018
BMC Genomics. 2011-11-15
BMC Bioinformatics. 2020-11-11
BMC Genomics. 2011-2-23
BMC Genomics. 2016-6-8
BMC Genomics. 2025-5-14
Sci Data. 2022-10-13
Front Genet. 2022-2-11