Suppr超能文献

双核非血红素铁酶 AurF 通过过氧化物激活亲电反应。

Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF.

机构信息

Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States.

Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea.

出版信息

J Am Chem Soc. 2017 May 24;139(20):7062-7070. doi: 10.1021/jacs.7b02997. Epub 2017 May 10.

Abstract

Binuclear non-heme iron enzymes activate O for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.

摘要

双核非血红素铁酶可激活氧,用于多种化学反应,包括有机底物的氧化和氢原子的提取。这个过程通常涉及过氧桥接双铁中间体的形成,其中只有一些可以进行亲电反应。为了阐明激活过氧反应性的几何和电子结构要求,已经通过光谱和计算方法对 4-氨基苯甲酸 N-加氧酶(AurF)中的活性过氧中间体进行了表征。还原 AurF 的磁圆二色性研究表明,其电子和几何结构准备快速与 O 反应。在该反应中形成的过氧中间体的核共振振动光谱定义表明,活性中间体具有质子化的过氧桥。在此建立的结构的密度泛函理论计算表明,质子化使过氧化物活化,用于亲电/单电子转移反应性。这种通过质子化激活过氧化物的方式可能也与其他双核非血红素铁酶中的反应性过氧中间体有关。

相似文献

1
Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF.
J Am Chem Soc. 2017 May 24;139(20):7062-7070. doi: 10.1021/jacs.7b02997. Epub 2017 May 10.
2
High-resolution iron X-ray absorption spectroscopic and computational studies of non-heme diiron peroxo intermediates.
J Inorg Biochem. 2020 Feb;203:110877. doi: 10.1016/j.jinorgbio.2019.110877. Epub 2019 Oct 22.
3
Convergent Theoretical Prediction of Reactive Oxidant Structures in Diiron Arylamine Oxygenases AurF and CmlI: Peroxo or Hydroperoxo?
J Am Chem Soc. 2017 Sep 20;139(37):13038-13046. doi: 10.1021/jacs.7b06343. Epub 2017 Sep 8.
5
Structure/function correlations over binuclear non-heme iron active sites.
J Biol Inorg Chem. 2016 Sep;21(5-6):575-88. doi: 10.1007/s00775-016-1372-9. Epub 2016 Jul 1.
7
Synthetic mononuclear nonheme iron-oxygen intermediates.
Acc Chem Res. 2015 Aug 18;48(8):2415-23. doi: 10.1021/acs.accounts.5b00218. Epub 2015 Jul 23.
8
Computational Examination on the Active Site Structure of a (Peroxo)diiron(III) Intermediate in the Amine Oxygenase AurF.
Inorg Chem. 2015 Dec 7;54(23):11077-82. doi: 10.1021/acs.inorgchem.5b00872. Epub 2015 Nov 20.

引用本文的文献

1
Nature of the Reactive Biferric Peroxy Intermediate P' in the Arylamine Oxygenases and Related Binuclear Fe Enzymes.
J Am Chem Soc. 2025 Apr 9;147(14):11707-11725. doi: 10.1021/jacs.4c11712. Epub 2025 Apr 1.
2
Heme Oxygenase-Like Metalloenzymes.
Annu Rev Biochem. 2025 Jun;94(1):59-88. doi: 10.1146/annurev-biochem-030122-043608. Epub 2025 Mar 27.
3
A single diiron enzyme catalyses the oxidative rearrangement of tryptophan to indole nitrile.
Nat Chem. 2024 Dec;16(12):1989-1998. doi: 10.1038/s41557-024-01603-z. Epub 2024 Sep 16.
4
Spectroscopic definition of ferrous active sites in non-heme iron enzymes.
Methods Enzymol. 2024;703:29-49. doi: 10.1016/bs.mie.2024.05.019. Epub 2024 Jun 21.
5
The Unique Role of the Second Coordination Sphere to Unlock and Control Catalysis in Nonheme Fe(II)/2-Oxoglutarate Histone Demethylase KDM2A.
Inorg Chem. 2024 Jun 10;63(23):10737-10755. doi: 10.1021/acs.inorgchem.4c01365. Epub 2024 May 23.
6
Reconstitution of the Final Steps in the Biosynthesis of Valanimycin Reveals the Origin of Its Characteristic Azoxy Moiety.
Angew Chem Int Ed Engl. 2024 Jan 2;63(1):e202315844. doi: 10.1002/anie.202315844. Epub 2023 Nov 28.
8
Electrospinning of n-hemin/PAN Nanocomposite Membranes and Its Photo-Enhanced Enzyme-like Catalysis.
Polymers (Basel). 2022 Nov 25;14(23):5135. doi: 10.3390/polym14235135.
9
Nuclear Resonance Vibrational Spectroscopy: A Modern Tool to Pinpoint Site-Specific Cooperative Processes.
Crystals (Basel). 2021 Aug;11(8). doi: 10.3390/cryst11080909. Epub 2021 Aug 2.
10
Generation of a μ-1,2-hydroperoxo FeFe and a μ-1,2-peroxo FeFe Complex.
Nat Commun. 2022 Mar 16;13(1):1376. doi: 10.1038/s41467-022-28894-5.

本文引用的文献

2
In-crystal reaction cycle of a toluene-bound diiron hydroxylase.
Nature. 2017 Apr 13;544(7649):191-195. doi: 10.1038/nature21681. Epub 2017 Mar 27.
4
Structure/function correlations over binuclear non-heme iron active sites.
J Biol Inorg Chem. 2016 Sep;21(5-6):575-88. doi: 10.1007/s00775-016-1372-9. Epub 2016 Jul 1.
5
Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.
J Biol Inorg Chem. 2016 Sep;21(5-6):589-603. doi: 10.1007/s00775-016-1363-x. Epub 2016 May 26.
6
Crystal Structure of the Peroxo-diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination.
Structure. 2015 May 5;23(5):882-892. doi: 10.1016/j.str.2015.03.002. Epub 2015 Apr 9.
7
An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway.
J Am Chem Soc. 2015 Feb 4;137(4):1608-17. doi: 10.1021/ja511649n. Epub 2015 Jan 21.
9
Comparison of high-spin and low-spin nonheme Fe(III)-OOH complexes in O-O bond homolysis and H-atom abstraction reactivities.
J Am Chem Soc. 2013 Feb 27;135(8):3286-99. doi: 10.1021/ja400183g. Epub 2013 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验