Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States.
Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea.
J Am Chem Soc. 2017 May 24;139(20):7062-7070. doi: 10.1021/jacs.7b02997. Epub 2017 May 10.
Binuclear non-heme iron enzymes activate O for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.
双核非血红素铁酶可激活氧,用于多种化学反应,包括有机底物的氧化和氢原子的提取。这个过程通常涉及过氧桥接双铁中间体的形成,其中只有一些可以进行亲电反应。为了阐明激活过氧反应性的几何和电子结构要求,已经通过光谱和计算方法对 4-氨基苯甲酸 N-加氧酶(AurF)中的活性过氧中间体进行了表征。还原 AurF 的磁圆二色性研究表明,其电子和几何结构准备快速与 O 反应。在该反应中形成的过氧中间体的核共振振动光谱定义表明,活性中间体具有质子化的过氧桥。在此建立的结构的密度泛函理论计算表明,质子化使过氧化物活化,用于亲电/单电子转移反应性。这种通过质子化激活过氧化物的方式可能也与其他双核非血红素铁酶中的反应性过氧中间体有关。