Suppr超能文献

双核非血红素铁活性位点的结构/功能相关性

Structure/function correlations over binuclear non-heme iron active sites.

作者信息

Solomon Edward I, Park Kiyoung

机构信息

Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.

Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

J Biol Inorg Chem. 2016 Sep;21(5-6):575-88. doi: 10.1007/s00775-016-1372-9. Epub 2016 Jul 1.

Abstract

Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.

摘要

双核非血红素铁酶激活氧气以进行多种化学反应。利用变温、变场磁圆二色光谱(VTVH MCD)已确定了氧气与耦合双核铁位点结合的三种不同结构机制。对于蚯蚓血红蛋白中的μ-OH桥连Fe(II)2位点,氧气以氢过氧化物的形式末端结合到一个五配位的Fe(II)中心,质子来自μ-OH桥,第二个电子在质子耦合电子转移过程中通过所得的μ-氧超交换途径从第二个配位饱和的Fe(II)中心转移。对于仅由羧酸盐桥连的Fe(II)2位点,氧气作为桥连过氧化物结合需要两个Fe(II)中心均配位不饱和,并且与两个正交的氧气π*轨道具有良好的前沿轨道重叠,以形成过氧桥连的Fe(III)2中间体。或者,仅在一个Fe(II)上具有单个开放配位位置的仅由羧酸盐桥连的Fe(II)2位点能够单电子形成Fe(III)-O2 (-)或Fe(III)-NO(-)物种。最后,对于过氧桥连的Fe(III)2中间体,其在单电子还原和亲电芳香取代中的反应性还需要进一步活化,并且讨论了与现有光谱数据一致的策略。

相似文献

1
Structure/function correlations over binuclear non-heme iron active sites.
J Biol Inorg Chem. 2016 Sep;21(5-6):575-88. doi: 10.1007/s00775-016-1372-9. Epub 2016 Jul 1.
4
O Activation by Non-Heme Iron Enzymes.
Biochemistry. 2016 Nov 22;55(46):6363-6374. doi: 10.1021/acs.biochem.6b00635. Epub 2016 Nov 14.
5
Peroxo and oxo intermediates in mononuclear nonheme iron enzymes and related active sites.
Curr Opin Chem Biol. 2009 Feb;13(1):99-113. doi: 10.1016/j.cbpa.2009.02.011. Epub 2009 Mar 9.
7
Systematic Perturbations of Binuclear Non-heme Iron Sites: Structure and Dioxygen Reactivity of de Novo Due Ferri Proteins.
Biochemistry. 2015 Aug 4;54(30):4637-51. doi: 10.1021/acs.biochem.5b00324. Epub 2015 Jul 24.
8
Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF.
J Am Chem Soc. 2017 May 24;139(20):7062-7070. doi: 10.1021/jacs.7b02997. Epub 2017 May 10.
9
CD/MCD/VTVH-MCD Studies of Escherichia coli Bacterioferritin Support a Binuclear Iron Cofactor Site.
Biochemistry. 2015 Dec 1;54(47):7010-8. doi: 10.1021/acs.biochem.5b01033. Epub 2015 Nov 18.

引用本文的文献

1
Eating the brain - A multidisciplinary study provides new insights into the mechanisms underlying the cytopathogenicity of Naegleria fowleri.
PLoS Pathog. 2025 Mar 17;21(3):e1012995. doi: 10.1371/journal.ppat.1012995. eCollection 2025 Mar.
2
Spectroscopic definition of ferrous active sites in non-heme iron enzymes.
Methods Enzymol. 2024;703:29-49. doi: 10.1016/bs.mie.2024.05.019. Epub 2024 Jun 21.
3
Generation of a μ-1,2-hydroperoxo FeFe and a μ-1,2-peroxo FeFe Complex.
Nat Commun. 2022 Mar 16;13(1):1376. doi: 10.1038/s41467-022-28894-5.
4
Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV) Intermediate Q in Methane Monooxygenase and Its Reactivity.
J Am Chem Soc. 2021 Oct 6;143(39):16007-16029. doi: 10.1021/jacs.1c05436. Epub 2021 Sep 27.
5
Ligand-Constraint-Induced Peroxide Activation for Electrophilic Reactivity.
Angew Chem Int Ed Engl. 2021 Jun 25;60(27):14954-14959. doi: 10.1002/anie.202100438. Epub 2021 May 28.
8
De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
Acc Chem Res. 2019 May 21;52(5):1148-1159. doi: 10.1021/acs.accounts.8b00674. Epub 2019 Apr 11.
9
Diiron monooxygenases in natural product biosynthesis.
Nat Prod Rep. 2018 Jul 18;35(7):646-659. doi: 10.1039/C7NP00061H.
10
Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes.
Chem Rev. 2018 Mar 14;118(5):2554-2592. doi: 10.1021/acs.chemrev.7b00457. Epub 2018 Feb 5.

本文引用的文献

2
Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.
J Biol Inorg Chem. 2016 Sep;21(5-6):589-603. doi: 10.1007/s00775-016-1363-x. Epub 2016 May 26.
3
Composition and Structure of the Inorganic Core of Relaxed Intermediate X(Y122F) of Escherichia coli Ribonucleotide Reductase.
J Am Chem Soc. 2015 Dec 16;137(49):15558-66. doi: 10.1021/jacs.5b10763. Epub 2015 Dec 4.
4
CD/MCD/VTVH-MCD Studies of Escherichia coli Bacterioferritin Support a Binuclear Iron Cofactor Site.
Biochemistry. 2015 Dec 1;54(47):7010-8. doi: 10.1021/acs.biochem.5b01033. Epub 2015 Nov 18.
5
Structure of the key species in the enzymatic oxidation of methane to methanol.
Nature. 2015 Feb 19;518(7539):431-4. doi: 10.1038/nature14160. Epub 2015 Jan 21.
6
An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway.
J Am Chem Soc. 2015 Feb 4;137(4):1608-17. doi: 10.1021/ja511649n. Epub 2015 Jan 21.
10
A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase.
J Am Chem Soc. 2013 Nov 13;135(45):16758-61. doi: 10.1021/ja407438p. Epub 2013 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验