Solomon Edward I, Park Kiyoung
Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
J Biol Inorg Chem. 2016 Sep;21(5-6):575-88. doi: 10.1007/s00775-016-1372-9. Epub 2016 Jul 1.
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.
双核非血红素铁酶激活氧气以进行多种化学反应。利用变温、变场磁圆二色光谱(VTVH MCD)已确定了氧气与耦合双核铁位点结合的三种不同结构机制。对于蚯蚓血红蛋白中的μ-OH桥连Fe(II)2位点,氧气以氢过氧化物的形式末端结合到一个五配位的Fe(II)中心,质子来自μ-OH桥,第二个电子在质子耦合电子转移过程中通过所得的μ-氧超交换途径从第二个配位饱和的Fe(II)中心转移。对于仅由羧酸盐桥连的Fe(II)2位点,氧气作为桥连过氧化物结合需要两个Fe(II)中心均配位不饱和,并且与两个正交的氧气π*轨道具有良好的前沿轨道重叠,以形成过氧桥连的Fe(III)2中间体。或者,仅在一个Fe(II)上具有单个开放配位位置的仅由羧酸盐桥连的Fe(II)2位点能够单电子形成Fe(III)-O2 (-)或Fe(III)-NO(-)物种。最后,对于过氧桥连的Fe(III)2中间体,其在单电子还原和亲电芳香取代中的反应性还需要进一步活化,并且讨论了与现有光谱数据一致的策略。