文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.

作者信息

Poller Johanna M, Zaloga Jan, Schreiber Eveline, Unterweger Harald, Janko Christina, Radon Patricia, Eberbeck Dietmar, Trahms Lutz, Alexiou Christoph, Friedrich Ralf P

机构信息

Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen.

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

出版信息

Int J Nanomedicine. 2017 Apr 19;12:3207-3220. doi: 10.2147/IJN.S132369. eCollection 2017.


DOI:10.2147/IJN.S132369
PMID:28458541
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5402883/
Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are promising tools for the treatment of different diseases. Their magnetic properties enable therapies involving magnetic drug targeting (MDT), hyperthermia or imaging. Depending on the intended treatment, specific characteristics of SPIONs are required. While particles used for imaging should circulate for extended periods of time in the vascular system, SPIONs intended for MDT or hyperthermia should be accumulated in the target area to come into close proximity of, or to be incorporated into, specific tumor cells. In this study, we determined the impact of several accurately characterized SPION types varying in size, zeta potential and surface coating on various human breast cancer cell lines and endothelial cells to identify the most suitable particle for future breast cancer therapy. We analyzed cellular SPION uptake, magnetic properties, cell proliferation and toxicity using atomic emission spectroscopy, magnetic susceptometry, flow cytometry and microscopy. The results demonstrated that treatment with dextran-coated SPIONs (SPION) and lauric acid-coated SPIONs (SPION) with an additional protein corona formed by human serum albumin (SPION) resulted in very moderate particle uptake and low cytotoxicity, whereas SPION had in part much stronger effects on cellular uptake and cellular toxicity. In summary, our data show significant dose-dependent and particle type-related response differences between various breast cancer and endothelial cells, indicating the utility of these particle types for distinct medical applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/32f39525e96f/ijn-12-3207Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/2a31cf9dc237/ijn-12-3207Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/07136931ca67/ijn-12-3207Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/4cfc8c916431/ijn-12-3207Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/95e9fb394d5b/ijn-12-3207Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/32f39525e96f/ijn-12-3207Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/2a31cf9dc237/ijn-12-3207Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/07136931ca67/ijn-12-3207Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/4cfc8c916431/ijn-12-3207Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/95e9fb394d5b/ijn-12-3207Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/5402883/32f39525e96f/ijn-12-3207Fig5.jpg

相似文献

[1]
Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.

Int J Nanomedicine. 2017-4-19

[2]
Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models.

Int J Nanomedicine. 2018-12-21

[3]
Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods.

Int J Nanomedicine. 2015-6-26

[4]
Cellular SPION Uptake and Toxicity in Various Head and Neck Cancer Cell Lines.

Nanomaterials (Basel). 2021-3-13

[5]
The Impact of Serum Proteins and Surface Chemistry on Magnetic Nanoparticle Colloidal Stability and Cellular Uptake in Breast Cancer Cells.

AAPS PharmSciTech. 2019-1-7

[6]
Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

Int J Nanomedicine. 2014-10-20

[7]
Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles.

Colloids Surf B Biointerfaces. 2017-9-28

[8]
Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

Int J Mol Sci. 2015-8-14

[9]
Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function.

Clin Hemorheol Microcirc. 2015

[10]
Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent.

Nanotechnology. 2020-9-11

引用本文的文献

[1]
Redox Balance in Cancer in the Context of Tumor Prevention and Treatment.

Biomedicines. 2025-5-9

[2]
Nanoscale strides: exploring innovative therapies for breast cancer treatment.

RSC Adv. 2024-4-29

[3]
A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles.

Discov Nano. 2023-10-10

[4]
Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review.

Front Bioeng Biotechnol. 2023-9-12

[5]
Dextran-Coated Iron Oxide Nanoparticles Loaded with 5-Fluorouracil for Drug-Delivery Applications.

Nanomaterials (Basel). 2023-6-6

[6]
Biomimetic Magnetic Particles for the Removal of Gram-Positive Bacteria and Lipoteichoic Acid.

Pharmaceutics. 2022-10-31

[7]
Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects.

Nanomaterials (Basel). 2022-10-12

[8]
Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles.

Int J Nanomedicine. 2022

[9]
Impact of Superparamagnetic Iron Oxide Nanoparticles on THP-1 Monocytes and Monocyte-Derived Macrophages.

Front Mol Biosci. 2022-2-4

[10]
Stimuli-Responsive Drug Delivery of Doxorubicin Using Magnetic Nanoparticle Conjugated Poly(ethylene glycol)--Chitosan Copolymer.

Int J Mol Sci. 2021-12-6

本文引用的文献

[1]
Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer.

BMC Genomics. 2016-8-22

[2]
The MTT and Crystal Violet Assays: Potential Confounders in Nanoparticle Toxicity Testing.

Int J Toxicol. 2016-7

[3]
Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing.

Nanomedicine (Lond). 2016-3-22

[4]
Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting.

Eur J Pharm Biopharm. 2016-4

[5]
Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles.

J Nanosci Nanotechnol. 2015-12

[6]
Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy.

Int J Nanomedicine. 2015-11-12

[7]
Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells.

Int J Mol Sci. 2015-11-3

[8]
Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function.

Clin Hemorheol Microcirc. 2015

[9]
Magnetic Nanoparticles in Cancer Theranostics.

Theranostics. 2015-9-1

[10]
Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

Int J Mol Sci. 2015-8-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索