文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

切向流超滤可实现月桂酸/白蛋白包被颗粒的纯化和浓缩,以改进磁疗效果。

Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

作者信息

Zaloga Jan, Stapf Marcus, Nowak Johannes, Pöttler Marina, Friedrich Ralf P, Tietze Rainer, Lyer Stefan, Lee Geoffrey, Odenbach Stefan, Hilger Ingrid, Alexiou Christoph

机构信息

Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany.

Institute for Diagnostic and Interventional Radiology, University Hospital Jena, 07747 Jena, Germany.

出版信息

Int J Mol Sci. 2015 Aug 14;16(8):19291-307. doi: 10.3390/ijms160819291.


DOI:10.3390/ijms160819291
PMID:26287178
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4581297/
Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

摘要

超顺磁性氧化铁纳米颗粒(SPIONs)常用于药物靶向、热疗及其他生物医学用途。最近,我们报道了月桂酸/白蛋白包覆的氧化铁纳米颗粒SEON(LA-BSA)的合成,该颗粒是使用过量白蛋白合成的。为了优化磁治疗应用,需要去除SPION悬浮液中的过量表面活性剂并进行浓缩。此类铁磁流体的传统纯化和浓缩方法通常涉及高剪切应力以及对白蛋白等大分子的低纯化率。在这项工作中,研究了通过低剪切应力切向超滤去除白蛋白及其对SEON(LA-BSA)颗粒的影响。通过过滤或浓缩至四倍(v/v),纳米颗粒的流体动力学尺寸、表面性质以及胶体稳定性均保持不变。由此,悬浮液的饱和磁化强度可从446.5 A/m提高至1667.9 A/m。体外分析表明,SEON(LA-BSA)的细胞摄取仅略有变化。比吸收率(SAR)受浓度影响不大。相比之下,通过将颗粒浓度提高至总铁含量为16.9 mg/mL,磁热疗中的最高温度Tmax从44.4°C大幅提高至64.9°C。综上所述,切向超滤对于纯化和浓缩复杂的混合包覆SPION悬浮液是可行的,且不会对特定颗粒特性产生负面影响。这增强了它们在磁治疗中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/8dae040b356b/ijms-16-19291-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/75a294d677ca/ijms-16-19291-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/3a2d2ad9913c/ijms-16-19291-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/b218c236624a/ijms-16-19291-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/bed5dbd833a7/ijms-16-19291-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/240bfef2a35a/ijms-16-19291-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/100aa46e7a09/ijms-16-19291-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/bb1bce4081c5/ijms-16-19291-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/8dae040b356b/ijms-16-19291-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/75a294d677ca/ijms-16-19291-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/3a2d2ad9913c/ijms-16-19291-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/b218c236624a/ijms-16-19291-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/bed5dbd833a7/ijms-16-19291-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/240bfef2a35a/ijms-16-19291-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/100aa46e7a09/ijms-16-19291-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/bb1bce4081c5/ijms-16-19291-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/4581297/8dae040b356b/ijms-16-19291-g008.jpg

相似文献

[1]
Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

Int J Mol Sci. 2015-8-14

[2]
Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

Int J Nanomedicine. 2014-10-20

[3]
Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.

Int J Nanomedicine. 2017-4-19

[4]
Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles.

Colloids Surf B Biointerfaces. 2017-9-28

[5]
Ion-Mobility-Based Quantification of Surface-Coating-Dependent Binding of Serum Albumin to Superparamagnetic Iron Oxide Nanoparticles.

ACS Appl Mater Interfaces. 2016-9-12

[6]
Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles.

Int J Mol Sci. 2015-4-24

[7]
Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods.

Int J Nanomedicine. 2015-6-26

[8]
A simple one pot purification of bacterial amylase from fermented broth based on affinity toward starch-functionalized magnetic nanoparticle.

Prep Biochem Biotechnol. 2015-8-18

[9]
The Impact of Serum Proteins and Surface Chemistry on Magnetic Nanoparticle Colloidal Stability and Cellular Uptake in Breast Cancer Cells.

AAPS PharmSciTech. 2019-1-7

[10]
Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material.

Mater Sci Eng C Mater Biol Appl. 2019-6-27

引用本文的文献

[1]
Mitoxantrone and Mitoxantrone-Loaded Iron Oxide Nanoparticles Induce Cell Death in Human Pancreatic Ductal Adenocarcinoma Cell Spheroids.

Materials (Basel). 2023-4-6

[2]
Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review.

Bioengineering (Basel). 2021-9-30

[3]
Cellular SPION Uptake and Toxicity in Various Head and Neck Cancer Cell Lines.

Nanomaterials (Basel). 2021-3-13

[4]
Intracellular Quantification and Localization of Label-Free Iron Oxide Nanoparticles by Holotomographic Microscopy.

Nanotechnol Sci Appl. 2020-12-9

[5]
Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models.

Int J Nanomedicine. 2018-12-21

[6]
Inert Coats of Magnetic Nanoparticles Prevent Formation of Occlusive Intravascular Co-aggregates With Neutrophil Extracellular Traps.

Front Immunol. 2018-10-2

[7]
Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.

Int J Nanomedicine. 2017-4-19

[8]
Impact of Superparamagnetic Iron Oxide Nanoparticles on Vocal Fold Fibroblasts: Cell Behavior and Cellular Iron Kinetics.

Nanoscale Res Lett. 2017-12

[9]
Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle-Covalent Versus Adsorptive Approach.

Nanoscale Res Lett. 2016-12

[10]
Heterogeneous response of different tumor cell lines to methotrexate-coupled nanoparticles in presence of hyperthermia.

Int J Nanomedicine. 2016-2-4

本文引用的文献

[1]
Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods.

Int J Nanomedicine. 2015-6-26

[2]
Magnetic thermoablation stimuli alter BCL2 and FGF-R1 but not HSP70 expression profiles in BT474 breast tumors.

Int J Nanomedicine. 2015-3-10

[3]
Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential.

Nanoscale Res Lett. 2014-11-5

[4]
Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

Int J Nanomedicine. 2014-10-20

[5]
The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids.

J Phys Condens Matter. 2014-4-30

[6]
A Novel Magnetic Field Device for Inducing Hyperthermia Using Magnetic Nanoparticles.

Biomed Tech (Berl). 2013-8

[7]
Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.

Int J Hyperthermia. 2013-8-22

[8]
Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications.

Int J Mol Sci. 2013-7-12

[9]
Improved drug targeting to liver tumors after intra-arterial delivery using superparamagnetic iron oxide and iodized oil: preclinical study in a rabbit model.

Invest Radiol. 2013-12

[10]
Efficient drug-delivery using magnetic nanoparticles--biodistribution and therapeutic effects in tumour bearing rabbits.

Nanomedicine. 2013-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索