Fisette Olivier, Wingbermühle Sebastian, Schäfer Lars V
Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany.
Front Immunol. 2017 Apr 18;8:408. doi: 10.3389/fimmu.2017.00408. eCollection 2017.
Antigen processing on MHCI involves the exchange of low-affinity peptides by high-affinity, immunodominant ones. This peptide editing process is mediated by tapasin and ERAAP at the peptide C- and N-terminus, respectively. Since tapasin does not contact the peptide directly, a sensing mechanism involving conformational changes likely allows tapasin to distinguish antigen-loaded MHCI molecules from those occupied by weakly bound, non-specific peptides. To understand this mechanism at the atomic level, we performed molecular dynamics simulations of MHCI allele B*44:02 loaded with peptides truncated or modified at the C- or N-terminus. We show that the deletion of peptide anchor residues leads to reversible, partial dissociation of the peptide from MHCI on the microsecond timescale. Fluctuations in the MHCI α helix segment, bordering the binding groove and cradled by tapasin in the PLC, are influenced by the peptide C-terminus occupying the nearby F-pocket. Simulations of tapasin complexed with MHCI bound to a low-affinity peptide show that tapasin widens the MHCI binding groove near the peptide C-terminus and weakens the attractive forces between MHCI and the peptide. Our simulations thus provide a detailed, spatially resolved picture of MHCI plasticity, revealing how peptide loading status can affect key structural regions contacting tapasin.
MHC I 上的抗原加工涉及低亲和力肽被高亲和力的免疫显性肽所取代。这种肽编辑过程分别由位于肽 C 端和 N 端的塔帕辛(tapasin)和内质网精氨酰肽酶(ERAAP)介导。由于塔帕辛不直接接触肽,一种涉及构象变化的传感机制可能使塔帕辛能够区分负载抗原的 MHC I 分子与那些被弱结合的非特异性肽占据的分子。为了在原子水平上理解这一机制,我们对加载了在 C 端或 N 端被截断或修饰的肽的 MHC I 等位基因 B*44:02 进行了分子动力学模拟。我们发现,肽锚定残基的缺失会导致肽在微秒时间尺度上从 MHC I 发生可逆的部分解离。MHC I α 螺旋段的波动受到占据附近 F 口袋的肽 C 端的影响,该螺旋段与结合槽相邻并在肽负载复合物(PLC)中由塔帕辛支撑。与结合低亲和力肽的 MHC I 复合的塔帕辛模拟显示,塔帕辛会在肽 C 端附近拓宽 MHC I 结合槽,并削弱 MHC I 与肽之间的吸引力。因此,我们的模拟提供了 MHC I 可塑性的详细、空间分辨图像,揭示了肽负载状态如何影响与塔帕辛接触的关键结构区域。