Onchis Darian M, Zappalà Simone
University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, A-1090 Vienna, AUSTRIA, West University of Timisoara, Faculty of Mathematics and Computer Science, Blvd. V. Parvan 4, Timisoara, Romania.
University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, A-1090 Vienna, AUSTRIA.
Proc Int Symp Symb Numer Algorithms Sci Comput. 2016;18:99-104. doi: 10.1109/SYNASC.2016.027.
In the multi-window spline-type spaces, the fast computation of the realizable dual frame could be achieved through a constructive reformulation of the biorthogonal relations. In this paper, we extend the results obtained in spline-type spaces, for the constructive realization of an approximate dual Gabor-like frame. We demonstrate the advantages of this approach in both flexibility and speed. The method allows in a natural way to handle non standard Gabor constructions like non-uniformity in frequency and the reductions of the number of used modulations. Experimental tests are presented in support of the algorithm.
在多窗口样条型空间中,可通过对双正交关系进行构造性重新表述来实现可实现对偶框架的快速计算。在本文中,我们将样条型空间中获得的结果进行扩展,以构造性地实现近似对偶类伽柏框架。我们展示了这种方法在灵活性和速度方面的优势。该方法以自然的方式允许处理非标准伽柏结构,如频率的非均匀性和所用调制数量的减少。给出了实验测试以支持该算法。