Department of Chemistry, ‡Department of Physics, §Department of Materials Science and Engineering, ∥Department of Macromolecular Science and Engineering, and ⊥Department of Biomedical Engineering, Case Western Reserve University , 10900 Euclid Ave., Cleveland, Ohio 44106, United States.
ACS Appl Mater Interfaces. 2017 May 24;9(20):17620-17628. doi: 10.1021/acsami.7b02638. Epub 2017 May 12.
Aluminum-doped zinc oxide (AZO) is a low-temperature processed transparent conductive oxide (TCO) made of earth abundant elements; its applications are currently limited by instability to heat, moisture, and acidic conditions. We demonstrate that the application of an organofunctional silane modifier mitigates AZO degradation and explore the interplay between performance and material composition and morphology. Specifically, we evaluate degradation of bare AZO and APTES (3-aminopropyltriethoxysilane)-modified AZO in response to damp heat (DH, 85 °C, 85% relative humidity) exposure over 1000 h and then demonstrate how surface modification impacts changes in electrical and optical properties and chemical composition in one of the most thorough studies to date. Hall measurements show that the resistivity of AZO increases due to a decrease in electron mobility, with no commensurate change in carrier concentration. APTES decelerates this electrical degradation, without affecting AZO optical properties. Percent transmission and yellowness index of an ensemble of bare and modified AZO are stable upon DH exposure, but haze increases slightly for a discrete sample of modified AZO. Atomic force microscopy (AFM) and optical profilometer (OP) measurements do not show evidence of pitting or delamination after 1000 h DH exposure but indicate a slight increase in surface roughness on both the nanometer and micrometer length scales. X-ray photoelectron spectroscopy data (XPS) reveal that the surface composition of bare and silanized AZO is stable over this time frame; oxygen vacancies, as measured by XPS, are also stable with DH exposure, which, together with transmission and Hall measurements, indicate stable carrier concentrations. However, after 1500 h of DH exposure, only bare AZO shows signs of catastrophic destruction. Comparison of the data presented herein to previous reports indicates that the initial AZO composition and microstructure dictate the degradation profile. This work demonstrates that surface modification slows the bulk degradation of AZO and provides insight into how the material can be more widely used as a transparent electrode in the next generation of optoelectronic devices.
掺铝氧化锌(AZO)是一种由丰富元素制成的低温处理透明导电氧化物(TCO),其应用目前受到热、湿和酸性条件不稳定性的限制。我们证明了有机官能硅烷修饰剂的应用可以减轻 AZO 的降解,并探讨了性能与材料组成和形态之间的相互作用。具体来说,我们评估了裸 AZO 和 APTES(3-氨基丙基三乙氧基硅烷)修饰的 AZO 在 1000 小时的湿热(DH,85°C,85%相对湿度)暴露下的降解情况,然后展示了表面修饰如何影响迄今为止最彻底的研究之一中的电和光学性能以及化学成分的变化。霍尔测量表明,AZO 的电阻率由于电子迁移率的降低而增加,而载流子浓度没有相应变化。APTES 减缓了这种电降解,而不影响 AZO 的光学性质。在 DH 暴露下,裸 AZO 和修饰 AZO 的集合体的透过率和黄度指数保持稳定,但修饰 AZO 的离散样本的雾度略有增加。原子力显微镜(AFM)和光学轮廓仪(OP)测量在 1000 小时 DH 暴露后没有显示出点蚀或分层的迹象,但表明在纳米和微米长度尺度上表面粗糙度略有增加。X 射线光电子能谱数据(XPS)表明,在这段时间内,裸和硅烷化 AZO 的表面组成是稳定的;通过 XPS 测量的氧空位在 DH 暴露下也是稳定的,这与透射率和霍尔测量一起表明稳定的载流子浓度。然而,在 1500 小时的 DH 暴露后,只有裸 AZO 显示出灾难性破坏的迹象。与以前的报告相比,对所提出的数据的比较表明,初始 AZO 组成和微观结构决定了降解曲线。这项工作证明了表面修饰可以减缓 AZO 的体相降解,并深入了解如何使该材料在下一代光电设备中更广泛地用作透明电极。