Mickol Rebecca L, Page Jessica L, Schuerger Andrew C
1 Center for Space and Planetary Sciences, University of Arkansas , Fayetteville, Arkansas.
2 Department of Physics and Space Science, Florida Institute of Technology , Melbourne, Florida.
Astrobiology. 2017 May;17(5):401-412. doi: 10.1089/ast.2015.1448. Epub 2017 May 1.
The growth of Serratia liquefaciens has been demonstrated under martian conditions of 0.7 kPa (7 mbar), 0°C, and CO-enriched anoxic atmospheres (Schuerger et al., 2013, Astrobiology 13:115-131), but studies into the survivability of cells under hypersaline conditions that are likely to be encountered on Mars are lacking. Serratia liquefaciens cells were suspended in aqueous MgSO solutions, or frozen brines, and exposed to terrestrial (i.e., 101.3 kPa, 24°C, O/N-normal atmosphere) or martian (i.e., 0.7 kPa, -25°C, CO-anoxic atmosphere) conditions to assess the roles of MgSO and UV irradiation on the survival of S. liquefaciens. Four solutions were tested for their capability to attenuate martian UV irradiation in both liquid and frozen forms: sterile deionized water (SDIW), 10 mM PO buffer, 5% MgSO, and 10% MgSO. None of the solutions in either liquid or frozen forms provided enhanced protection against martian UV irradiation. Sixty minutes of UV irradiation reduced cell densities from 2.0 × 10 cells/mL to less than 10 cells/mL for both liquid and frozen solutions. In contrast, 3-4 mm of a Mars analog soil were sufficient to attenuate 100% of UV irradiation. Results suggest that terrestrial microorganisms may not survive on Sun-exposed surfaces on Mars, even if the cells are embedded in frozen martian brines composed of MgSO. However, if dispersed microorganisms can be covered by only a few millimeters of dust or regolith, long-term survival is probable. Key Words: Hypobaria-Mars-Planetary protection-Brines. Astrobiology 17, 401-412.
在0.7千帕(7毫巴)、0°C和富含一氧化碳的缺氧大气的火星条件下,已证实液化沙雷氏菌能够生长(舒尔格等人,2013年,《天体生物学》13:115 - 131),但缺乏对火星上可能遇到的高盐条件下细胞生存能力的研究。将液化沙雷氏菌细胞悬浮于硫酸镁水溶液或冷冻盐水中,并使其暴露于地球(即101.3千帕、24°C、正常氧/氮大气)或火星(即0.7千帕、-25°C、一氧化碳缺氧大气)条件下,以评估硫酸镁和紫外线照射对液化沙雷氏菌生存的作用。测试了四种溶液在液态和冷冻态下减弱火星紫外线照射的能力:无菌去离子水(SDIW)、10毫摩尔磷酸缓冲液、5%硫酸镁和10%硫酸镁。无论是液态还是冷冻态的溶液,都没有提供对火星紫外线照射的增强保护。对于液态和冷冻态溶液,60分钟的紫外线照射都将细胞密度从2.0×10个细胞/毫升降低到了不足10个细胞/毫升。相比之下,3 - 4毫米厚的火星模拟土壤足以减弱100%的紫外线照射。结果表明,即使细胞嵌入由硫酸镁组成的火星冷冻盐水中,陆地微生物也可能无法在火星上阳光照射的表面存活。然而,如果分散的微生物仅能被几毫米厚的尘埃或风化层覆盖,它们就有可能长期存活。关键词:低压 - 火星 - 行星保护 - 盐水。《天体生物学》17,401 - 412。