Suppr超能文献

脂肪酶编码基因Pnpla2和Lipe之间的上位性相互作用导致小鼠发生脂肪肉瘤。

Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice.

作者信息

Wu Jiang Wei, Preuss Christoph, Wang Shu Pei, Yang Hao, Ji Bo, Carter Gregory W, Gladdy Rebecca, Andelfinger Gregor, Mitchell Grant A

机构信息

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.

出版信息

PLoS Genet. 2017 May 1;13(5):e1006716. doi: 10.1371/journal.pgen.1006716. eCollection 2017 May.

Abstract

Liposarcoma is an often fatal cancer of fat cells. Mechanisms of liposarcoma development are incompletely understood. The cleavage of fatty acids from acylglycerols (lipolysis) has been implicated in cancer. We generated mice with adipose tissue deficiency of two major enzymes of lipolysis, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), encoded respectively by Pnpla2 and Lipe. Adipocytes from double adipose knockout (DAKO) mice, deficient in both ATGL and HSL, showed near-complete deficiency of lipolysis. All DAKO mice developed liposarcoma between 11 and 14 months of age. No tumors occurred in single knockout or control mice. The transcriptome of DAKO adipose tissue showed marked differences from single knockout and normal controls as early as 3 months. Gpnmb and G0s2 were among the most highly dysregulated genes in premalignant and malignant DAKO adipose tissue, suggesting a potential utility as early markers of the disease. Similar changes of GPNMB and G0S2 expression were present in a human liposarcoma database. These results show that a previously-unknown, fully penetrant epistatic interaction between Pnpla2 and Lipe can cause liposarcoma in mice. DAKO mice provide a promising model for studying early premalignant changes that lead to late-onset malignant disease.

摘要

脂肪肉瘤是一种通常致命的脂肪细胞癌症。脂肪肉瘤的发病机制尚未完全明确。脂肪酸从酰基甘油的裂解(脂解作用)与癌症有关。我们构建了脂肪组织中缺乏两种主要脂解酶的小鼠,即分别由Pnpla2和Lipe编码的脂肪甘油三酯脂肪酶(ATGL)和激素敏感性脂肪酶(HSL)。来自同时缺乏ATGL和HSL的双脂肪敲除(DAKO)小鼠的脂肪细胞显示出几乎完全缺乏脂解作用。所有DAKO小鼠在11至14个月大时都发生了脂肪肉瘤。单敲除小鼠或对照小鼠未出现肿瘤。早在3个月时,DAKO脂肪组织的转录组就显示出与单敲除和正常对照有明显差异。Gpnmb和G0s2是癌前和恶性DAKO脂肪组织中失调最严重的基因之一,表明它们有可能作为该疾病的早期标志物。在人类脂肪肉瘤数据库中也存在GPNMB和G0S2表达的类似变化。这些结果表明,Pnpla2和Lipe之间一种以前未知的、完全显性的上位性相互作用可导致小鼠发生脂肪肉瘤。DAKO小鼠为研究导致迟发性恶性疾病的早期癌前变化提供了一个有前景的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f95/5432192/ff0f9d865763/pgen.1006716.g001.jpg

相似文献

1
Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice.
PLoS Genet. 2017 May 1;13(5):e1006716. doi: 10.1371/journal.pgen.1006716. eCollection 2017 May.
4
Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity.
Diabetologia. 2006 Jul;49(7):1629-36. doi: 10.1007/s00125-006-0272-x. Epub 2006 May 10.
8
Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis.
Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1847-55. doi: 10.1152/ajpendo.00040.2007. Epub 2007 Feb 27.
9
The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice.
Obes Res. 2001 Feb;9(2):119-28. doi: 10.1038/oby.2001.15.

引用本文的文献

2
Three-dimensional models: from cell culture to Patient-Derived Organoid and its application to future liposarcoma research.
Oncol Res. 2024 Dec 20;33(1):1-13. doi: 10.32604/or.2024.053635. eCollection 2025.
3
Inhibitory Activity of on the Lipid Accumulation through Suppressing Adipogenesis and Activating Lipolysis in 3T3-L1 Cells.
J Microbiol Biotechnol. 2024 Oct 28;34(10):2070-2078. doi: 10.4014/jmb.2404.04037. Epub 2024 Jul 30.
5
ATGL promotes colorectal cancer growth by regulating autophagy process and SIRT1 expression.
Med Oncol. 2023 Nov 8;40(12):350. doi: 10.1007/s12032-023-02148-w.
6
Cooperative lipolytic control of neuronal triacylglycerol by spastic paraplegia-associated enzyme DDHD2 and ATGL.
J Lipid Res. 2023 Nov;64(11):100457. doi: 10.1016/j.jlr.2023.100457. Epub 2023 Oct 11.
7
The p53 tumor suppressor regulates AKR1B1 expression, a metastasis-promoting gene in breast cancer.
Front Mol Biosci. 2023 Sep 14;10:1145279. doi: 10.3389/fmolb.2023.1145279. eCollection 2023.
8
G0S2 promotes antiestrogenic and pro-migratory responses in ER+ and ER- breast cancer cells.
Transl Oncol. 2023 Jul;33:101676. doi: 10.1016/j.tranon.2023.101676. Epub 2023 Apr 20.
10
Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review.
Front Endocrinol (Lausanne). 2022 Sep 7;13:990299. doi: 10.3389/fendo.2022.990299. eCollection 2022.

本文引用的文献

1
Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice.
J Exp Med. 2016 Sep 19;213(10):2019-37. doi: 10.1084/jem.20160157. Epub 2016 Aug 29.
3
G0S2 Suppresses Oncogenic Transformation by Repressing a MYC-Regulated Transcriptional Program.
Cancer Res. 2016 Mar 1;76(5):1204-13. doi: 10.1158/0008-5472.CAN-15-2265. Epub 2016 Feb 2.
4
Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth.
Nat Commun. 2016 Feb 3;7:10539. doi: 10.1038/ncomms10539.
5
The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 2015 Dec 23;1(6):417-425. doi: 10.1016/j.cels.2015.12.004.
6
Dedifferentiated Liposarcoma: Updates on Morphology, Genetics, and Therapeutic Strategies.
Adv Anat Pathol. 2016 Jan;23(1):30-40. doi: 10.1097/PAP.0000000000000101.
9
Alternative lengthening of telomeres and loss of ATRX are frequent events in pleomorphic and dedifferentiated liposarcomas.
Mod Pathol. 2015 Aug;28(8):1064-73. doi: 10.1038/modpathol.2015.67. Epub 2015 May 29.
10
Application of molecular biology to individualize therapy for patients with liposarcoma.
Am Soc Clin Oncol Educ Book. 2015:213-8. doi: 10.14694/EdBook_AM.2015.35.213.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验