Fares Mario A, Sabater-Muñoz Beatriz, Toft Christina
Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Valencia, Spain.
Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.
Genome Biol Evol. 2017 May 1;9(5):1229-1240. doi: 10.1093/gbe/evx085.
Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast.
基因复制产生新的遗传物质,这已被证明会导致单细胞和多细胞生物出现重大创新。酿酒酵母物种的祖先发生了一次全基因组复制,但92%的复制基因在复制后不久又恢复为单拷贝基因。酿酒酵母中持续存在的复制基因导致了主要代谢创新的起源,这些创新一直是面包酵母酿酒酵母独特生物技术能力的来源。决定复制基因命运的因素仍然未知。在这里,我们首次证明局部基因组突变和转录速率决定了复制基因的命运。我们首次展示了复制基因在酿酒酵母基因组的突变和转录热点中的优先定位。复制机制很重要,与小规模复制相比,全基因组复制表现出不同的保留趋势。基因组突变和转录热点富含具有大量重复启动子元件的复制基因。酿酒酵母对具有重复启动子元件的复制基因中的有害突变表现出更大的耐受性,而这些基因反过来又对环境扰动表现出更高的转录可塑性。我们的数据表明,基因组通过其基因拷贝的加速调控和功能分化来捕获复制基因,为酵母中的新适应性提供了一个来源。