Swings Toon, Van den Bergh Bram, Wuyts Sander, Oeyen Eline, Voordeckers Karin, Verstrepen Kevin J, Fauvart Maarten, Verstraeten Natalie, Michiels Jan
Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.
VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium.
Elife. 2017 May 2;6:e22939. doi: 10.7554/eLife.22939.
While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy.
虽然特定的突变能使生物体适应压力环境,但生物体DNA中的大多数变化都会对适应性产生负面影响。因此,突变率受到严格调控,通常被视为一个缓慢演变的参数。相比之下,我们证明了细胞突变率在应对选择压力变化时具有意想不到的灵活性。我们发现,当不同培养物适应高乙醇压力时,超突变会独立进化。此外,超突变状态是短暂的,会与突变率的降低反复交替。具体而言,当细胞经历更高压力时,群体突变率会上升,而一旦细胞适应,突变率又会再次下降。有趣的是,我们确定细胞死亡率是驱动突变率快速演变的主要力量。这些发现共同展示了生物体如何平衡稳健性和进化能力,并有助于解释超突变在各种情况下的普遍性,从微生物中抗生素抗性的出现到化疗后癌症的复发。