Suppr超能文献

髓鞘化在中枢神经系统中的机械重要性。

The mechanical importance of myelination in the central nervous system.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

Chair of Applied Mechanics, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.

出版信息

J Mech Behav Biomed Mater. 2017 Dec;76:119-124. doi: 10.1016/j.jmbbm.2017.04.017. Epub 2017 Apr 19.

Abstract

Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of myelination in immature, pre-natal brains and mature, post-natal brains. We found that both gray and white matter tissue stiffened significantly (p≪0.001) upon maturation: the gray matter stiffness doubled from 0.31±0.20kPa pre-natally to 0.68±0.20kPa post-natally; the white matter stiffness tripled from 0.45±0.18kPa pre-natally to 1.33±0.64kPa post-natally. At the same time, the white matter myelin content increased significantly (p≪0.001) from 58±2% to 74±9%. White matter stiffness and myelin content were correlated with a Pearson correlation coefficient of ρ=0.92 (p≪0.001). Our study suggests that myelin is not only important to ensure smooth electrical signal propagation in neurons, but also to protect neurons against physical forces and provide a strong microstructural network that stiffens the white matter tissue as a whole. Our results suggest that brain tissue stiffness could serve as a biomarker for multiple sclerosis and other forms of demyelinating disorders. Understanding how tissue maturation translates into changes in mechanical properties and knowing the precise brain stiffness at different stages of life has important medical implications in development, aging, and neurodegeneration.

摘要

中枢神经系统中的神经元被髓鞘包围并交联,髓鞘是一种白色的脂肪物质,包裹在轴突周围,形成电绝缘层。髓鞘的电功能已被广泛认可;然而,其机械重要性仍然被低估。在这里,我们结合纳米压痕测试和组织学染色,将大脑的刚性与未成熟的产前大脑和成熟的产后大脑的髓鞘程度相关联。我们发现,灰质和白质组织在成熟过程中都显著变硬(p≪0.001):灰质的刚性从产前的 0.31±0.20kPa 增加到产后的 0.68±0.20kPa,增加了一倍;白质的刚性从产前的 0.45±0.18kPa 增加到产后的 1.33±0.64kPa,增加了两倍。与此同时,白质的髓鞘含量显著增加(p≪0.001),从 58±2%增加到 74±9%。白质的刚性和髓鞘含量呈正相关,皮尔逊相关系数 ρ=0.92(p≪0.001)。我们的研究表明,髓鞘不仅对确保神经元中电信号的平稳传播很重要,而且对保护神经元免受物理力的影响,并提供一个坚固的微观结构网络,使白质组织整体变硬。我们的结果表明,脑组织的刚性可以作为多发性硬化症和其他脱髓鞘疾病的生物标志物。了解组织成熟如何转化为机械性能的变化,以及了解不同生命阶段的大脑精确刚性,对发育、衰老和神经退行性疾病具有重要的医学意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验